K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

n = 1 thì không chia hết cho 2 và 5

28 tháng 10 2023

Ta có \(P=n^2+n+7=n\left(n+1\right)+7\). Ta thấy \(n,n+1\) là 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\) \(\Rightarrow P=n\left(n+1\right)+7⋮̸2\)

 Bây giờ ta sẽ chứng minh \(P⋮̸5\). Thật vậy, giả sử tồn tại n để \(P⋮5\) . Khi đó vì P lẻ nên P có chữ số tận cùng là 5. 

 \(\Rightarrow n\left(n+1\right)\) có chữ số tận cùng là 3, điều này rõ ràng vô lí vì \(n\left(n+1\right)⋮2\). Vậy điều giả sử là sai \(\Rightarrow P⋮̸5\) (đpcm)

28 tháng 10 2023

Chỗ này 8 mới đúng nhé. Mình vẫn phải làm thêm 1 bước nữa.

 Ta thấy \(n^2\) chỉ có thể có chữ số tận cùng là 0, 1, 4, 5, 6, 8, 9. Ta kí hiệu \(f\left(a\right)\) là chữ số tận cùng của số tự nhiên a.

 Khi đó nếu \(f\left(n^2\right)=0\) thì \(f\left(n\right)=0\), do đó \(f\left(P\right)=0\), loại.

 Nếu \(f\left(n^2\right)=1\) thì \(\left[{}\begin{matrix}f\left(n\right)=1\\f\left(n\right)=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}f\left(P\right)=2\\f\left(P\right)=0\end{matrix}\right.\), loại.

 Nếu \(f\left(n^2\right)=4\) thì \(\left[{}\begin{matrix}f\left(n\right)=2\\f\left(n\right)=8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=6\\f\left(P\right)=2\end{matrix}\right.\), loại.

 Nếu \(f\left(n^2\right)=5\) thì \(f\left(n\right)=5\) nên \(f\left(P\right)=0\), loại.

 Nếu \(f\left(n^2\right)=6\) thì \(\left[{}\begin{matrix}f\left(n\right)=4\\f\left(n\right)=6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=0\\f\left(P\right)=2\end{matrix}\right.\), loại.

 Nếu \(f\left(n^2\right)=9\) thì \(\left[{}\begin{matrix}f\left(n\right)=3\\f\left(n\right)=7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=2\\f\left(P\right)=6\end{matrix}\right.\), loại.

Vậy với mọi n thì chữ số tận cùng của P không thể là 8, dẫn tới vô lí. Ta có đpcm.

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

DD
25 tháng 10 2021

\(3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=40\left(3+...+3^{2009}\right)⋮40\)

26 tháng 10 2021

rrrrr

14 tháng 1 2021

hỏi chút là 74n-1 hay là 74n-1 vậy 

12 tháng 4 2015

t thử = máy tính rùi nhưng k đk