cho tam giác abc cân ở a (a<90 độ) . Từ b và c theo thứ tự kẻ bd vuông góc với ac (d€ac) ce vuông góc với ab (e€ab) .Gọi o là giao điểm của bd và ce. a) chứng minh tam giac abd= tam giac ace.b) chung minh tam giac obc cân.c) kẻ eh là tia phân giác beo(h€bo).dk là phân giác cua cdo(k€co).chứng minh eh=dk.d)gọi i là giao điểm của eh và dk .chứng minh ba điểm a,o,i thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Hình tự vẽ
a ) Ta có : BM = AB ( theo đề bài )
=> Tam giác AMB cân tại B
b ) Do tam giác ABC vuông cân tại A => AB = AC
mà CN = AB => CN cũng = AC
=> Tam giác ANC cân tại C
c ) Tam giác j cân tại A ???
Bài 2 : Hình bn tự vẽ nhé
a ) AH \(\perp\)BC => \(\Delta AHB\)và \(\Delta AHC\)là hai tam giác vuông
Do tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét hai tam giác vuông : \(\Delta AHB\)và \(\Delta AHC\)có :
AB = AC ( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( cmt )
nên tam giác AHB = tam giác AHC ( cạnh huyền - góc nhọn )
b ) Do tam giác AHB = tam giác AHC => HB = HC ( hai cạnh tương ứng )
c ) Do tam giác AHB = tam giác AHC => \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia p/g của \(\widehat{BAC}\)
Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.
b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.
Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.
b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.
Ta có: \(\widehat{ADB}+\widehat{ADC}=180^o\) (2 góc kề bù)
Mà \(\widehat{ADC}=150^o\)
\(\Rightarrow\widehat{ADB}=30^o\)
Vì ΔABC vuông cân tại A nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 1 = 45 0
Vì ∆ BCD vuông cân tại B nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 2 = 45 0
∠ (ACD) = ∠ C 1 + ∠ C 2 = 45 0 + 45 0 = 90 0
⇒ AC ⊥ CD
Mà AC ⊥ AB (gt)
Suy ra: AB //CD
Vậy tứ giác ABCD là hình thang vuông.
ΔBDC vuông cân tại B
=>góc BCD=góc BDC=45 độ
ΔABC vuông cân tại A
=>góc ABC=góc ACB=45 độ
góc ABC=góc DCB
mà hai góc này ở vị trí so le trong
nên AB//DC
mà AB vuông góc AC
nên DC vuông góc AC
Xét tứ giác ABDC có
AB//DC
góc CAB=90 độ
Do đó: ABDC là hình thang vuông
a) Ta có : ACB = 45° ( ∆ABC vuông cân tại A )
Ta có : AEC = 45° ( ∆ACE vuông cân tại E )
=> ACB = AEC = 45°
Mà 2 góc này ở vị trí so le trong
=> AE//BC
=> AEBC là hình thang
Mà AEC = 90°
=> AEBC là hình thang vuông
Vì tam giác ABC vuông cân tại A (gt) nên góc ABC = góc ACB = 90 : 2 = 45 độ
Vì tam giác BCD vuông cân tại B (gt) nên góc BDC = góc BCD = 90 : 2 = 45 độ
Ta có: góc ACB + góc BCD = góc ACD = 45 độ + 45 độ = 90 độ
hay AC vuông góc DC. (1)
Vì tam giác ABC vuông cân tại A (gt) nên AC vuông góc AB (2)
Từ (1) và (2) suy ra DC // AB
Do đó tứ giác ABCD là hình thang.
cm ao và oi cùng đi qua một đường thẳng