K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến ứng với cạnh huyền BC

nên \(AP=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

b: Xét ΔABC có

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMPN có 

PN//AM

PN=AM

Do đó: AMPN là hình bình hành

mà \(\widehat{NAM}=90^0\)

nên AMPN là hình chữ nhật

c: Xét tứ giác APCE có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo PE

Do đó: APCE là hình bình hành

mà PE\(\perp\)AC

nên APCE là hình thoi

4 tháng 1 2020

a) Ta có: NB = NC (gt); ND = NA (gt)

⇒ Tứ giác ABDC là hình bình hành

có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.

b) Ta có: AI = IC (gt); NI = IE (gt)

⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.

Vậy tứ giác AECN là hình thoi.

c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.

Tương tự G’ là trọng tâm của hai tam giác ACD

⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’

d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)

Lại có: BG = GG’ = CG’ (tính chất trọng tâm)

⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD

(chung đường cao kẻ từ D và đáy bằng nhau)

Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))

⇒SDGG' = 24/3 = 8(cm2)

23 tháng 12 2022

SDGB là S tam giác DGB pk ạ ?

30 tháng 12 2020

Bổ sung câu c:

Tam giác ABC cần có thêm điều kiện gì thì hình chữ nhật PACM là hình vuông.

 

16 tháng 12 2022

a: BC=10cm

=>AI=5cm

b: Xét tứ giác AMIN có

góc AMI=góc ANI=góc MAN=90 độ

nên AMIN là hình chữ nhật

c: Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

Xét tứ giác ADCI có

N là trung điểm chung của AC và DI

IA=IC

Do đó: ADCI là hình thoi

18 tháng 12 2022

Cho mình xin hình đc ko

 

 

 

18 tháng 12 2022

a: Xét ΔCAB có CF/CA=CE/CB

nên FE//AB và FE=AB/2

=>FE//AD và FE=AD

Xét tứ giác AFED có

FE//AD

FE=AD

góc FAD=90 độ

Do đó: AFED là hình chữ nhật

Xét tứ giác AECK có

F là trung điểm chung của AC và EK

EA=EC

Do đó: AECK là hình thoi

b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)