1.So sánh
A = 1 + 5 2 + 5 4 + ...+ 5 với 5 42 - 2 / 24
2.So sánh
1 + 7 2 + 7 4+ ... +7 6 +...+7 100 với 7102 -2019 / 2021
3. CMR (chứng minh rằng) 1 + 52 + 54 +...+ 526 chia hết cho 26
4. CMR (chứng minh rằng) 1+22+24+...+2100 chia hết cho 21
5.CMR (chứng minh rằng) 1+32+34+36+...+3100 chia hết cho 82
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)