K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2020

ĐKXĐ: \(x\ne\left\{0;2\right\}\)

- Với \(x>0\Leftrightarrow x^2-1+x+1=2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x=2x^2-4x\Leftrightarrow x^2-5x=0\Rightarrow x=5\)

- Với \(x< -1\Leftrightarrow x^2-1-x-1=-2x\left(x-2\right)\)

\(\Leftrightarrow x^2-x-2=-2x^2+4x\)

\(\Leftrightarrow3x^2-5x-2=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-\frac{1}{3}\end{matrix}\right.\) (đều loại)

- Với \(-1< x< 0\Leftrightarrow x^2-1+x+1=-2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x=-2x^2+4x\Leftrightarrow3x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) (loại)

Vậy pt có nghiệm duy nhất \(x=5\)

2 tháng 2 2019

a,\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x+1}.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)\(\Leftrightarrow\left(\frac{x^2-x+x^2+x}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-90=0\)\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}-10\right)\left(\frac{2x^2}{x^2-1}+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2}{x^2-1}=10\\\frac{2x^2}{x^2-1}=-9\end{cases}\Leftrightarrow......}\)

b,Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\Rightarrow ab=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2-4}{x^2-1}\)

Từ đó ta có phương trình:\(20a^2-5b^2+48ab=0\Leftrightarrow20a^2-2ab-5b^2+50ab=0\)

\(\Leftrightarrow2a\left(10a-b\right)+5b\left(10a-b\right)=0\Leftrightarrow\left(2a+5b\right)\left(10a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=-5b\\10a=b\end{cases}}\)

TH1:\(2a=-5b\Leftrightarrow\frac{2\left(x-2\right)}{x+1}=\frac{-5\left(x+2\right)}{x-1}\)\(\Rightarrow2\left(x-2\right)\left(x-1\right)=-5\left(x+2\right)\left(x+1\right)\)\(\Leftrightarrow2x^2-6x+4=-5x^2-15x-10\)\(\Leftrightarrow7x^2+9x+14=0\)

\(\Leftrightarrow7\left(x^2+\frac{9}{7}x+2\right)=0\Leftrightarrow7\left(x^2+2.\frac{9}{14}+\frac{81}{196}\right)+\frac{311}{28}=0\)

\(\Leftrightarrow7\left(x+\frac{9}{14}\right)^2+\frac{311}{28}=0\),vô lí
TH2:Tự làm nhé ,tương tự

30 tháng 3 2020

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

30 tháng 3 2020

Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)

Chúc bạn học tốt nhaok.

7 tháng 3 2017

\(\left(x+4\right)^2\)nhấn lộn.mn giúp đỡ

NV
13 tháng 4 2020

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)

\(\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

NV
14 tháng 4 2019

ĐKXĐ: \(x\ne0\)

Ta có \(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\)

Đặt \(x^2+\frac{1}{x^2}=a\Rightarrow\left(x+\frac{1}{x}\right)^2=a+2\) pt trở thành:

\(8\left(a+2\right)+4a^2-4a\left(a+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8a+16+4a^2-4a^2-8a=\left(x+4\right)^2\)

\(\Leftrightarrow\left(x+4\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}x+4=4\\x+4=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-8\end{matrix}\right.\)

1 tháng 4 2020

a) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)

<=> \(3x-7=x\left(3x-7\right)\)

<=> \(\left(3x-7\right)-x\left(3x-7\right)=0\)

<=> \(\left(3x-7\right)\left(1-x\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)

Vậy S = { 7/3; 1}

b) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

<=> \(\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)

<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)

<=> \(\left(3x-1\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\)

<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

<=> x = 1/3 hoặc x = 3 hoặc x = 4.

Vậy S = { 1/3; 3; 4}