bài 2:
\(A=\frac{3}{\sqrt{x}+1}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{9}{x-\sqrt{x}-2}\)
TÌM x nguyên để biết A nhận giá trị nguyên
XIN CÁC BẠN GIÚP MK BÀI NÀY VỚI Ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)+\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)= \(\frac{2\sqrt{x}-9-\left(x-9\right)+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) Q <1 <=> \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}< 1< =>1+\frac{4}{\sqrt{x}-3}\)<1 <=> \(\frac{4}{\sqrt{x}-3}< 0\) <=> \(\sqrt{x}-3< 0< =>\sqrt{x}< 3\)<=> \(0\le\)x< 9
c) Q = 1 \(+\frac{4}{\sqrt{x}-3}\) là số nguyên khi 4 chia hết cho\(\sqrt{x}-3\) <=> \(\sqrt{x}-3=1;\sqrt{x}-3=-1;\sqrt{x}-3=2\);\(\sqrt{x}-3=-2;\sqrt{x}-3=4;\sqrt{x}-3=-4\)
<=> x= 16; x = 4; x = 25; x = 1 ; x = 49
Bài làm của bạn Mạnh có hai lỗi:
+) ĐKXĐ: \(\hept{\begin{cases}x-5\sqrt{x}+6\ne0;\sqrt{x}-2\ne0;3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4;9\end{cases}}\)
+) Vì ko có điều kiện nên câu c chưa loại nghiệm. x = 4 loại nhé
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(P=\frac{x-3\sqrt{x}-x-9}{x-9}.\frac{x\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(P=\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{x\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(P=\frac{-3x}{2\left(\sqrt{x}+2\right)}\)
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu
a) Ta có:
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)
\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)