Cho ba số âm x,y,z thỏa mãn: \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216};x^2+y^2+z^2=14\).Khi đó x+y-z=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x^3/8=y^3/64=z^3/216=>x^2/4=y^2/16=y^2/36 và x^2+y^2+z^2=14
adtcdtsbn, ta có:
x^2/4=y^2/16=z^2/36=x^2+y^2+z^2/4+16+36=14/56=0,25
x^2/4=0,25=> x^2=1=>x=1
y^2/16=0,25=> y^2=4=> y=2
z^2/36=0,25=>z^2=9=>z=3
khi đó x+y-z= 1+2-3=0.
Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\forall a;b>0\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Mà \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}\) (đpcm)
Áp dụng ta được :
\(P=\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(\frac{y}{2}+1\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{8}{\left(x+\frac{y}{2}+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}\)
Ta có : \(\left(x^2+1\right)+\left(y^2+4\right)+\left(z^2+1\right)\ge2x+4y+2z\)
\(\Leftrightarrow3y+6\ge2x+4y+2z\Rightarrow6\ge2x+y+2z\)
\(\Rightarrow x+\frac{y}{2}+z\le3\)\(\Rightarrow P\ge\frac{64}{\left(3+5\right)^2}=1\)
Vậy Min P = 1 Tại \(x=1;y=2;z=1\)
em ko hiểu mọi người thích cái người ? tk cho mà lại thích nhỉ
em thì thích OLM lựa chọn để có điểm cơ như thế mới có điểm .
Theo t/c dãy tỉ số=nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y+z}{2-3+4}=\frac{3}{3}=1\)
=>x/2=1=>x=2
y/3=1=>y=3
z/4=1=>z=4
ĐẶT\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow x=1998k,y=1999k,z=2000k\)
\(\Rightarrow\left(x-z\right)^3=\left(1998k-2000k\right)^3=\left(-2k\right)^3=-8k^3\)
\(8.\left(x-y\right)^2.\left(y-z\right)=8.\left(1998k-1999k\right)^2.\left(1999k-2000k\right)=-8k^3\)
=> đpcm
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=0,25\)
Suy ra: x2/4=0,25 =>x2=1=>x=-1 hoặc x=1
y2/16=0,25=>y2=4 =>y=2 hoặc y=-2
z2/36=0,25 =>z2=9 => z=3 hoặc z=-3
Thèo đề bài, ta có:
\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
x ; y ; z thì bạn tự tìm nhé , chắc cái này không khó đâu nhỉ ??
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) \(=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{4}=\frac{1}{4}\Rightarrow y=1\)
\(\frac{z}{6}=\frac{1}{4}\Rightarrow z=\frac{3}{2}\)
Lời giải:
$\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}$
$\Rightarrow (\frac{x}{2})^3=(\frac{y}{4})^3=(\frac{z}{6})^3$
$\Rightarrow \frac{x}{2}=\frac{y}{4}=\frac{z}{6}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}$
Áp dụng TCDTSBN:
$\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}$
$\Rightarrow x^2=1\Rightarrow x=\pm 1$
Nếu $x=1$ thì $\frac{y}{4}=\frac{z}{6}=\frac{1}{2}\Rightarrow y=2; z=3$
$\Rightarrow x+y-z=1+2-3=0$
Nếu $x=-1$ thì $\frac{y}{4}=\frac{z}{6}=\frac{-1}{2}\Rightarrow y=-2; z=-3$
$\Rightarrow x+y-z=(-1)+(-2)-(-3)=0$
Vậy $x+y-z=0$