K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H.a) Cm: tgCBD cân và tg CEHK nội tiếp.b) Cm: AD2 = AH. AE                                                                                                                                                                                           c) Cho BD = 24cm; BC = 20cm. TÍnh chu vi hình...
Đọc tiếp

Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H.
a) Cm: tgCBD cân và tg CEHK nội tiếp.
b) Cm: AD= AH. AE                                                                                                                                                                                           c) Cho BD = 24cm; BC = 20cm. TÍnh chu vi hình tròn (O).                                                                                                                                  d) Cho góc BCD = α. Trên nửa mặt phẳng bờ BS không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo α để M thuộc đường tròn (O)

0

Xét ΔIAC vuông tại I và ΔIDB vuông tại I có

góc IAC=góc IDB

=>ΔIAC đồng dạng với ΔIDB

=>IA/ID=IC/IB

=>IA*IB=ID*IC

Xét ΔACF và ΔAEC có

góc ACF=góc AEC

góc CAF chung

=>ΔACF đồng dạng với ΔAEC

=>AC/AE=AF/AC

=>AC^2=AE*AF

21 tháng 1 2022

a) Xét (O): E \(\in\) (O) (gt).

\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).

Xét tứ giác BEFI:

\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.

b) Xét (O): \(CD\perp AB\) tại I (gt).

                  AB là đường kính; CD là dây (gt).

\(\Rightarrow\) I là trung điểm của CD. 

Xét tam giác ACD: 

AI là đường trung tuyến (I là trung điểm của CD).

AI là đường cao \(\left(AI\perp CD\right).\)

\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).

Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)

Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).

Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)

\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)

Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).

\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)

Xét tam giác ACF và tam giác AEC:

\(\widehat{A}chung.\)

\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)

\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).

\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)

16 tháng 10 2023

loading...  loading...  loading...  

5 tháng 4 2022

undefined

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác BEFI có \(\widehat{BEF}+\widehat{BIF}=90^0+90^0=180^0\)

nên BEFI là tứ giác nội tiếp

b: Xét ΔAIF vuông tại I và ΔAEB vuông tại E có

\(\widehat{EAB}\) chung

Do đó: ΔAIF~ΔAEB

=>\(\dfrac{AI}{AE}=\dfrac{AF}{AB}\)

=>\(AI\cdot AB=AF\cdot AE\)

a: Xét tứ giác AHCK có \(\widehat{AHC}+\widehat{AKC}=90^0+90^0=180^0\)

nên AHCK là tứ giác nội tiếp

b: ta có: AHCK là tứ giác nội tiếp

=>\(\widehat{CHK}=\widehat{CAK}=\widehat{CAE}\left(1\right)\)

Xét (O) có

\(\widehat{CAE}\) là góc nội tiếp chắn cung CE

\(\widehat{CDE}\) là góc nội tiếp chắn cung CE

Do đó: \(\widehat{CAE}=\widehat{CDE}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{CHK}=\widehat{CDE}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên HK//DE

 

Xét (O) có

\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AEB}=90^0\)

Xét tứ giác BEFI có 

\(\widehat{BEF}+\widehat{FIB}=180^0\)

nên BEFI là tứ giác nội tiếp

hay B,E,F,I cùng thuộc 1 đường tròn

13 tháng 5 2016
a, ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => tứ giác BEFI nội tiếp b) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng vs tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)
7 tháng 11 2017
a, Ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => Tứ giác BEFI nội tiếpb) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng với tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)c, Có ^ACF = ^CBA (phụ ^ICB) . Trong (O) có ^ACF = ^CEF (chắn hai cung bằng nhau AC và cung AD) vậy ^ACF = ^CEF < 90 nên AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CEF suy ra tâm của đường tròn đường tròn ngoại tiếp tứ giác CEF thuộc đường vuông góc AC tại C nên tâm thuộc AC cố định  
28 tháng 5 2018

a) Tứ giác BEFI có: BFF = 90(gt)

BEF = BEA = 90o

=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF

b)  O I F A B C D E

Vì \(AB\perp CD\)nên AC = AD

=> ACF = AEC

Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC

=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)

=> AE . AF = AC2

c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)

Mặt khác, ta có: ACB = 90(góc nội tiếp chứa đường tròn)

\(\Rightarrow AC\perp CB\)(2) 

Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.