Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H.
a) Cm: tgCBD cân và tg CEHK nội tiếp.
b) Cm: AD2 = AH. AE c) Cho BD = 24cm; BC = 20cm. TÍnh chu vi hình tròn (O). d) Cho góc BCD = α. Trên nửa mặt phẳng bờ BS không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo α để M thuộc đường tròn (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔIAC vuông tại I và ΔIDB vuông tại I có
góc IAC=góc IDB
=>ΔIAC đồng dạng với ΔIDB
=>IA/ID=IC/IB
=>IA*IB=ID*IC
Xét ΔACF và ΔAEC có
góc ACF=góc AEC
góc CAF chung
=>ΔACF đồng dạng với ΔAEC
=>AC/AE=AF/AC
=>AC^2=AE*AF
a) Xét (O): E \(\in\) (O) (gt).
\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).
Xét tứ giác BEFI:
\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.
b) Xét (O): \(CD\perp AB\) tại I (gt).
AB là đường kính; CD là dây (gt).
\(\Rightarrow\) I là trung điểm của CD.
Xét tam giác ACD:
AI là đường trung tuyến (I là trung điểm của CD).
AI là đường cao \(\left(AI\perp CD\right).\)
\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).
Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)
Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).
Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)
\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)
Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).
\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)
Xét tam giác ACF và tam giác AEC:
\(\widehat{A}chung.\)
\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).
\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)
a: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
Xét tứ giác BEFI có \(\widehat{BEF}+\widehat{BIF}=90^0+90^0=180^0\)
nên BEFI là tứ giác nội tiếp
b: Xét ΔAIF vuông tại I và ΔAEB vuông tại E có
\(\widehat{EAB}\) chung
Do đó: ΔAIF~ΔAEB
=>\(\dfrac{AI}{AE}=\dfrac{AF}{AB}\)
=>\(AI\cdot AB=AF\cdot AE\)
a: Xét tứ giác AHCK có \(\widehat{AHC}+\widehat{AKC}=90^0+90^0=180^0\)
nên AHCK là tứ giác nội tiếp
b: ta có: AHCK là tứ giác nội tiếp
=>\(\widehat{CHK}=\widehat{CAK}=\widehat{CAE}\left(1\right)\)
Xét (O) có
\(\widehat{CAE}\) là góc nội tiếp chắn cung CE
\(\widehat{CDE}\) là góc nội tiếp chắn cung CE
Do đó: \(\widehat{CAE}=\widehat{CDE}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{CHK}=\widehat{CDE}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//DE
Xét (O) có
\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AEB}=90^0\)
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{FIB}=180^0\)
nên BEFI là tứ giác nội tiếp
hay B,E,F,I cùng thuộc 1 đường tròn
a) Tứ giác BEFI có: BFF = 90o (gt)
BEF = BEA = 90o
=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF
b)
Vì \(AB\perp CD\)nên AC = AD
=> ACF = AEC
Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC
=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)
=> AE . AF = AC2
c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)
Mặt khác, ta có: ACB = 90o (góc nội tiếp chứa đường tròn)
\(\Rightarrow AC\perp CB\)(2)
Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.