Tìm 1 số có hai chữ số. Biết rằng chữ số hàng
đơn vị gấp 3 lần chữ số hàng chục và nếu ta đổi
chỗ 2 chữ số cho nhau thì đc số mới lớn hơn số
cũ 54 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có các số tự nhiên có 2 chữ số mà chữ só hàng đơn vị gấp ba lần chữ số hàng chục là 39;26;13
ta lần lượt thử các số
viết ngược của 13 là 31, lớn hơn số ban đầu : 31-13=18 (loại)
viết ngược của 26 là 62, lớn hơn số ban đầu :62-26=36 (loại)
viết ngược của 39 là 93, lớn hơn số ban đầu :93-39=54 (thỏa mãn)
Vậy số cần tìm là 39
Gọi số cần tìm là \(ab\left(ab\in N.0< a< b< 10\right)\)
Ta có : \(b=3a\)
Khi đổi hai chữ số ta được số \(ba=10b+a\)
Vì số mới lớn hơn số cũ 54 đơn vị nên ta có phương trình:
\(10b+a-54=10a+b\)
\(\Leftrightarrow9b-9a=54\)
\(\Leftrightarrow9.3a-9a=54\)
\(\Leftrightarrow18a=54\)
\(\Leftrightarrow a=3\left(tm\right)\)
Mà \(b=3a\) nên \(b=3\times3=9\left(tm\right)\)
Vậy số cần tìm là \(39\)
Gọi số cần tìm là = 10a + b (a, b ∈ N. 0 < a < b < 10)
Ta có b = 3a
Khi đổi hai chữ số ta được số = 10b + a
Vì số mới lớn hơn số cũ 54 đơn vị nên ta có phương trình: 10b + a – 54 = 10a + b
⇔ 9b – 9a = 54
⇔ 9.3a – 9a = 54
⇔ 18a = 54
⇔ a =3 (tmđk)
Vậy số ban đầu cần tìm là 39.
Gọi số ban đầu là abc nên khi chuyển chữ số hàng trăm và chữ số hàng đơn vị cho nhau ta được số cba ( 0 < a < hoặc bằng 9 ; 0 < c < hoặc bằng 9 ; 0 < hoặc bằng b < hoặc bằng 9 )
Theo bài ra ta có :
abc + 792 = cba
100a + 10b + c + 792 = 100c + 10b + a
99a + a + 10b + c + 792 = 99c + c + 10b + a
99a + 792 = 99c ( cùng bớt 2 vế đi a + 10b + c )
99 x ( a + 8 ) = 99 x c
a + 8 = c ( cùng chia 2 vế đi 99 )
Vì a + 8 = c mà 0 < a < hoặc = 9
0 < c < hoặc = 9
Suy ra a = 1 ; c = 9
Mà chữ số hàng đơn vị gấp 3 lần chữ số hàng chục nên ta có :
c = 3 x b
=> b = c : 3
b = 9 : 3
b = 3
Ta được số hoàn chỉnh là 139.
Vậy số cần tìm là 139.
Ta có:
cba - abc = 792
=> (100c + 10b + a) - (100a + 10b + c) = 792
=> 100c + 10b + a - 100a - 10b - c = 792
=> 99c - 99a = 792
=> 99.(c - a) = 792
=> c - a = 792 : 99
=> c - a = 8
Do c là chữ số => c = 8; a = 0 hoặc c = 9; a = 1
Mà c = 3b => c chia hết cho 3 => c = 9; a = 1
=> b = 3
Vậy số cần tìm là 139
Gọi số ban đầu là (abc), số mới là (cba) (a,b,c là stn nhỏ hơn 10 và a # 0)
Hiệu của chúng là :
(100c+10b+a)-(100a+10b+c)=
=100c+a-100a-c=99(c-a)
Theo đề bài :
99(c-a)=792 =>c-a=8 =>a=1; c=9
c=9 =>b=9/3=3
Vậy số tự nhiên ban đầu là 139.