Chứng minh:7 1990+7 1995+7 1994 chia hết cho 52
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)=7^{1994}.57⋮57\)
Ta có : \(7^{1996}+7^{1995}+7^{1994}\)
\(=7^{1995}\left(7+7^2+7^3\right)\)
\(=7^{1995}.399\)chia hết cho 399 (đpcm)
\(7^{1996}+7^{1995}+7^{1994}\)
\(=7^{1994}\left(7^2+7+1\right)\)
\(=7^{1994}.57\)
\(=7^{1993}.7.57\)
\(=7^{1993}.399\) \(\)chia hết cho 399 (đpcm)
1) tìm x :
5x. (x - 3 ) + 7.(x - 3 ) = 0
<=> ( x -3 ) . ( 5x +7 ) = 0
<=> x - 3 = 0 hoặc 5x + 7 = 0
<=> x = 3 hoặc x = -7/5
Vậy x € { 3 ; -7/5 }
3 ) chứng mình rằng :
7 1996 + 71995 + 71994 chia hết cho 57
71996 + 71995 + 71994
<=> 71994 . 72 + 71994 .7 + 71994
<=> 71994 . ( 72 + 7 + 1 )
<=> 71994 . 57 chia hết cho 57 ( vì 57 chia hết cho 57 ) ( đ..p.c.m )
Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)
\(\Rightarrow5x^2-15x+7x-21=0\)
\(\Rightarrow5x^2-8x-21=0\)
\(\Rightarrow5x^2-15x+7x-21=0\)
\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)
Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)
\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)
TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)
TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)
C, tương tự
Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)
\(=7^{1994}.57\)\(⋮\)\(7\)
\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)
Sửa đề: \(7^{52}+7^{51}-7^{50}\)
\(=7^{50}\left(7^2+7-1\right)=7^{50}\cdot55⋮55\)
a. 3/5 + 6/11 + 7/13 + 2/5 + 16/11 + 19/13
= ( 3/5 + 2/5 ) + ( 6/11 + 16/11 ) + ( 7/13 + 19/13)
= 1 + 2 + 2
= 5.
a) \(\frac{3}{5}+\frac{6}{11}+\frac{7}{13}+\frac{2}{5}+\frac{16}{11}+\frac{19}{13}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)\)
\(=1+2+2=5\)
b) \(\frac{1995}{1997}x\frac{1990}{1993}x\frac{1997}{1994}x\frac{1993}{1995}x\frac{997}{995}=\frac{1995x1990x1997x1993x997}{1997x1993x1994x1995x995}=\frac{1990x997}{1994x995}=\frac{995x2x997}{997x2x995}=1\)
a) =(3/5+2/5)+(6/11+16/11)+(19/13+7/13)
=5/5+22/11+26/13
=1+2+3
=6
Ta thấy 1995 chia hết cho 7, do đó:
19921993 + 19941995 = (BS 7 – 3)1993 + (BS 7 – 1)1995 = BS 7 – 31993 + BS 7 – 1
Theo câu b ta có 31993 = BS 7 + 3 nên
19921993 + 19941995 = BS 7 – (BS 7 + 3) – 1 = BS 7 – 4 nên chia cho 7 thì dư 3
32860 = 33k + 1 = 3.33k = 3(BS 7 – 1) = BS 7 – 3 nên chia cho 7 thì dư 4
Ta có: \(2^{1994}=\left(2^{1992}\right).2^2=2^3.664.2^2=8^{664}.2^2\)
Do \(8^3\) đồng dư 1 mod 7 nên \(8^{664}\) đồng dư 1.
Vậy \(8^{664}\).\(2^2\)=\(8^{664}\).4 sẽ đồng dư 4 mod 7.Vậy \(2^{1994}\) chia 7 dư 4.