K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2015

Ta có BF/3=BC/5=>BF2/9=BC2/25

Theo tính chất của dãy tỉ số bằng nhau ta có:

BF2/9=BC2/25=BC2-BF2/25-9=CF2/16=64/16=4

=>BC2=4.5=20

BC=\(\sqrt{20}\)cm

9 tháng 2 2018

k dùm mình

8 tháng 1 2019

ai đó giải hộ mik bài này

4 tháng 2 2019


a, từ đề bài có:

BE⊥ACCF⊥ABBE⊥AC CF⊥AB

⇒ΔBFC vuông tại FΔCEB vuông tại E⇒ΔBFC vuông tại FΔCEB vuông tại E

Xét ΔBFCΔBFC:

BF3=BC5=k⇒BF=3k,BC=5kBF3=BC5=k⇒BF=3k,BC=5k

Theo định lý Py-ta-go ta có:

(3k)2+82=(5k)29k2+64=25k264=16k2k2=4k=2BF=3k=3⋅2=6BC=5k=5⋅2=10(3k)2+82=(5k)29k2+64=25k264=16k2k2=4k=2BF=3k=3⋅2=6BC=5k=5⋅2=10

Xét ΔCEBΔCEB:

Theo định lý Py-ta-go đảo ta có:

CE2+BE2=CB2CE2+82=102CE2+64=100CE2=36CE=6CE2+BE2=CB2CE2+82=102CE2+64=100CE2=36CE=6

Xét ΔBFC và ΔCEBΔBFC và ΔCEB có:

CE=BF(=6)BE=CF(gt)Cạnh chung BC⇒ΔBFC và ΔCEB(c.c.c)⇒FBCˆ=ECBˆ(góc tương ứng)CE=BF(=6)BE=CF(gt)Cạnh chung BC⇒ΔBFC và ΔCEB(c.c.c)⇒FBC^=ECB^(góc tương ứng)

Xét ΔABCΔABC:

ABCˆ=FBCˆ=ECBˆ=ACBˆ⇒ABCˆ=ACBˆABC^=FBC^=ECB^=ACB^⇒ABC^=ACB^

ΔABCΔABC có hai góc ở đáy bằng nhau

⇒ΔABC⇒ΔABC là tam giác cân

b) BC=10(cmt)

14 tháng 1 2020

Tham khảo:  Câu hỏi của Nguyễn Đức Duy

8 tháng 1 2020

A B C E F O

GT

 △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm

 BF và BC tỉ lệ 3 và 5

 BE ∩ CF = {O} . Nối AO với EF

KL

 a, △ABC cân

 b, BC = ?

 c, AO là trung trực EF

Bài làm:

a, Xét △BFC vuông tại F và △CEB vuông tại E

Có: BC là cạnh chung

      CF = BE (gt)

=> △BFC = △CEB (ch-cgv)

=> FBC = ECB (2 góc tương ứng)

Xét △ABC có: ABC = ACB (cmt)

=> △ABC cân tại A

b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)

Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)

Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)

\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)

\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)

\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)

c, Vì △ABC cân tại A => AB = AC

Ta có: AB = AF + FB

          BC = AE + EC

Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)

=> AF = AE

=> A thuộc đường trung trực của FE   (1)

Ta có: DBC = FBE + EBC 

          ECB = ECF + FCB

Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)

=> FBE = ECF

Xét △BFO vuông tại F và △CEO vuông tại E

Có: FBO = ECO (cmt) 

     BF = CE (△BFC = △CEB)

=> △BFO = △CEO (cgv-gnk)

=> FO = OE (2 cạnh tương ứng)

=> O thuộc đường trung trực của FE   (2)

Từ (1) và (2) => đường thẳng AO là trung trực của EF.

8 tháng 1 2020

thank bạn

13 tháng 4 2020

Mình cx đang kẹt câu này nè. Cùng bài luôn. Bài của tớ nè:
Bài 1: Cho  tam giác ABC, kẻ BE  AC và CF AB. Biết BE = CF = 8cm. độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a. Chứng minh tam giác ABC là tam giác cân
b. Tính độ dài cạnh đáy BC
c. BE và CF cắt nhao tại O. Nối OA và EF. Chứng minh đường thẳng AO là trung trực của đoạn thẳng EF.

13 tháng 4 2020

BẠN ĐÃ LÀM ĐƯỢC NHỮNG CÂU NÀO RỒI 

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)a, Chứng minh: HB=HC và BAH=CAHb, Tính độ dài AHc, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cânBài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CNa, Chứng minh: tam giác ABM = tam giác ACNb, Kẻ BH vuông góc với AM, CK vuông...
Đọc tiếp

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)

a, Chứng minh: HB=HC và BAH=CAH

b, Tính độ dài AH

c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân

Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN

a, Chứng minh: tam giác ABM = tam giác ACN

b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK

c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.

a, Chứng minh tam giác ABC là tam giác cân

b, Tính độ dài cạnh đáy BC

c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF

Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:

a, Tam giác ADB= tam giác EDB

b, BD là đường trung trực của AE

c, Tam giác EDC vuông cân

d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng

Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh

a, Tam giác MNF= tam giác MPE

b, Tam giác NSE= tam giác PSE

c, EF // NP

d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng

Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D

a, Chứng minh AD=AE và góc ABD= góc EBD

b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân

c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE

d, Chứng minh 3 điểm F, D,E thẳng hàng

Mình đang cần gấp

1

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O