Cho a,b,c>0 sao cho a+b+c=1. CMR \(\sqrt[3]{3a+1}+\sqrt[3]{3b+1}+\sqrt[3]{3c+1}\le3\sqrt[3]{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm hộ tui đi à,đây là Sol của thầy Sỹ,đọc là 1 chuyện nhưng hiểu mới là vấn đề.
BĐT đẹp vãi ra mà ối sồi ôi lời giải khủng VCL.Hóng cách nhẹ hơn...
Theo BĐT Bu nhi a cốp xki ta có :
\(VT=\sqrt{a+3b}+\sqrt{b+3c}+\sqrt{c+3a}\le\sqrt{3\left(4a+4b+4c\right)}=\sqrt{12\left(a+b+c\right)}=\sqrt{36}=6\)
Vậy đpcm . Dấu bằng xảy ra khi \(a=b=c=1\)
cái này dễ thôi, Áp dụng bđt cô si ta có
\(\sqrt[3]{a+3b}\le\frac{a+3b+1+1}{3}\)
tương tự và + vào ta có \(A\le\frac{4\left(a+b+c\right)+6}{3}=3\) (đpcm)
dấu = xảy ra <=> a=b=c=1/4
Dự đoán điểm rơi \(a=b=c=4\) .
Áp dụng BĐT AM-GM ta có :
\(\left\{{}\begin{matrix}a+4\ge4\sqrt{a}\\b+4\ge4\sqrt{b}\\c+4\ge4\sqrt{c}\end{matrix}\right.\Rightarrow2\sqrt{a}+2\sqrt{b}+2\sqrt{c}\le\dfrac{a+b+c+12}{2}\)
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :
\(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le\sqrt{3.\left[3\left(a+b+c\right)+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\right]}=\sqrt{3.\left(3.12+12+3\right)}=3\sqrt{17}\)
Vậy BĐT đã được chứng minh !
Hơi khoai :))))))
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt[3]{a+3b}=\sqrt[3]{1.1.(a+3b)}\leq \frac{1+1+a+3b}{3}\)
\(\Rightarrow \frac{1}{\sqrt[3]{a+3b}}\geq \frac{3}{a+3b+2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow P\geq 3\left(\frac{1}{a+3b+2}+\frac{1}{b+3c+2}+\frac{1}{c+3a+2}\right)$
Áp dụng BĐT Cauchy- Schwarz:
\(\frac{1}{a+3b+2}+\frac{1}{b+3c+2}+\frac{1}{c+3a+2}\geq \frac{9}{4(a+b+c)+6}=\frac{9}{4.\frac{3}{4}+6}=1\)
Do đó: $P\geq 3.1=3$
Vậy $P_{\min}=3$ khi $a=b=c=\frac{1}{4}$
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có
\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)
TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)
=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)
Dấu bằng xảy ra khi a=b=c
cảm ơn bạn nhiều, bạn có thể giúp mình hai câu kia nữa được không
ta có \(\sqrt[3]{3a+1}=\frac{\sqrt[3]{\left(3a+1\right)2.2}}{\sqrt[3]{4}}\le\frac{3a+1+2+2}{3\sqrt[3]{4}}=\frac{3a+5}{3\sqrt[3]{4}}\)
tương tự \(\hept{\begin{cases}\sqrt[3]{3b+1}\le\frac{3b+5}{3\sqrt[3]{4}}\\\sqrt[3]{3c+1}\le\frac{3c+5}{3\sqrt[3]{4}}\end{cases}}\)
\(=>P\le\frac{3\left(a+b+c\right)+15}{3\sqrt[3]{4}}=\frac{6}{\sqrt[3]{4}}=3\sqrt[3]{2}\)