Giảipt
\(\frac{2\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3\left(2x+1\right)}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được
\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0
<=> x + 59 = 0
<=> x=-59
a) \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{40\left(x-9\right)}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{40x-360}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{360-33x}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow2160-198x=160x+12\)
\(\Leftrightarrow358x=2148\)
\(\Leftrightarrow x=6\)
Vậy nghiệm của pt x=6
b) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
\(\Leftrightarrow\frac{10\left(x-1\right)+4}{12}-\frac{21x-3}{12}=\frac{4x+2}{7}-\frac{35}{7}\)
\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-33}{7}\)
\(\Leftrightarrow-77x-21=48x-396\)
\(\Leftrightarrow125x=375\)
\(\Leftrightarrow3\)
Vậy nghiệm của pt x=3
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
\(a,-\frac{3}{2}-2x+\frac{3}{4}=-2\)
=> \(-\frac{3}{2}+\left(-2x\right)+\frac{3}{4}=-2\)
=> \(\left(-\frac{3}{2}+\frac{3}{4}\right)+\left(-2x\right)=-2\)
=> \(-\frac{3}{4}+\left(-2x\right)=-2\)
=> \(-2x=-2-\left(-\frac{3}{4}\right)=-\frac{5}{4}\)
=> \(x=-\frac{5}{4}:\left(-2\right)=\frac{5}{8}\)
Vậy \(x\in\left\{\frac{5}{8}\right\}\)
\(b,\left(\frac{-2}{3}x-\frac{3}{4}\right)\left(\frac{3}{-2}-\frac{10}{4}\right)=\frac{2}{5}\)
=> \(\left(-\frac{2}{3}x-\frac{3}{4}\right).\left(-4\right)=\frac{2}{5}\)
=> \(-\frac{2}{3}x-\frac{3}{4}=\frac{2}{5}:\left(-4\right)=-\frac{1}{10}\)
=> \(-\frac{2}{3}x=-\frac{1}{10}+\frac{3}{4}=\frac{13}{20}\)
=> \(x=\frac{13}{20}:\left(-\frac{2}{3}\right)=-\frac{39}{40}\)
Vậy \(x\in\left\{-\frac{39}{40}\right\}\)
\(c,\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
=> \(\frac{x}{2}-\frac{3x}{5}+\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)
=> \(10.\frac{x}{2}-10.\frac{3x}{5}+10.\frac{13}{5}=10.\frac{-7}{5}-10.\frac{7}{10}x\)
( chiệt tiêu )
=> \(5x-6x+26=-14-7x\)
=> \(-x+26=-14-7x\)
=> \(-x+7x=-14-26\)
=> \(6x=-40\)
=> \(x=-40:6=\frac{20}{3}\)
Vậy \(x\in\left\{\frac{20}{3}\right\}\)
\(d,\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)
=> \(6.\frac{2x-3}{3}+6.\frac{-3}{2}=6.\frac{5-3x}{6}-6.\frac{1}{3}\)
( chiệt tiêu )
=> \(2\left(2x-3\right)-9=5-3x-2\)
=> \(4x-6-9=3-3x\)
=> \(4x-15=3-3x\)
=> \(4x+3x=3+15\)
=> \(7x=18\)
=> \(x=18:7=\frac{18}{7}\)
Vậy \(x\in\left\{\frac{18}{7}\right\}\)
\(e,\frac{2}{3x}-\frac{3}{12}=\frac{4}{x}-\left(\frac{7}{x}.2\right)\)
ĐKXĐ : \(x\ne0\)
=> \(\frac{2}{3x}-\frac{1}{4}=\frac{4}{x}-\frac{14}{x}\)
=> \(\frac{2}{3x}-\frac{4}{x}+\frac{14}{x}=\frac{1}{4}\)
=> \(\frac{2}{3x}-\frac{12}{3x}+\frac{42}{3x}=\frac{1}{4}\)
=> \(\frac{32}{3x}=\frac{1}{4}\)
=> \(3x=32.4:1=128\)
=> \(x=128:3=\frac{128}{3}\)
Vậy \(x\in\left\{\frac{128}{3}\right\}\)
\(k,\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}\)
ĐKXĐ :\(x\ne1;\)
=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{6}{3\left(x-1\right)}\)
=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{1}{x-1}\)
=> \(\frac{2.13}{2\left(x-1\right)}+\frac{5}{2\left(x-1\right)}-\frac{2.1}{2.\left(x-1\right)}\)
=> \(\frac{26+5-2}{2\left(x-1\right)}\)
=> \(\frac{29}{2\left(x-1\right)}\)
\(m,\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)
=> \(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)
=> \(\frac{19}{10}:x=\frac{3}{2}+\frac{1}{2}=2\)
=> \(x=\frac{19}{10}:2=\frac{19}{20}\)
Vậy \(x\in\left\{\frac{19}{20}\right\}\)
\(n,\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\left(2x-1\right)=\left(\frac{-3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
=> \(\frac{233}{286}\left(2x-1\right)=-\frac{233}{572}\)
=> \(2x-1=-\frac{233}{572}:\frac{233}{286}=-\frac{1}{2}\)
=> \(2x=-\frac{1}{2}+1=\frac{1}{2}\)
=> \(x=\frac{1}{2}:2=\frac{1}{4}\)
Vậy \(x\in\left\{\frac{1}{4}\right\}\)
b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
⇔\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)
⇔\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)
⇔\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)
⇔\(9x-10=0\)
hay 9x=10
⇔\(x=\frac{10}{9}\)
Vậy: \(x=\frac{10}{9}\)
c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
⇔\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)
⇔\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)
⇔\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)
⇔\(6x-3-5x+10-3x-21=0\)
⇔\(-2x-14=0\)
⇔\(-2x=14\)
hay x=-7
Vậy: x=-7
d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
⇔\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
⇔\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
⇔\(6x-18+7x-35-13x-4=0\)
⇔\(-21\ne0\)
Vậy: x∈∅
e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)
⇔\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)
⇔\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)
⇔\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)
⇔\(-12x+96=0\)
⇔\(-12x=-96\)
hay x=8
Vậy: x=8