Cho tam giác ABC cân tại A. Vẽ BD, CE lần lượt vuông góc với AC và AB. Gọi I là giao điểm BD và CE.
a, Chứng minh rằng: Tam giác AEI = tam giác ADI
b, Gọi M là trung điểm BC. Chứng minh rằng: A, I, M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
b. Ta có : AB = BE + EA
CA = CD + DA
MÀ : AB=CA ( TAM GIÁC ABC CÂN TẠI A )
EA=DA ( ΔADB=ΔAEC)
⇒BE=CD
XÉT ΔOBE VÀ ΔOCD
CÓ : \(\widehat{E}=\widehat{D}\) (GT)
BE=CD (CMT)
\(\widehat{EBO}=\widehat{DCO}\) (ΔADB=ΔAEC)
⇒ΔOBE = ΔOCD (G-C-G)
⇒OB = OC (2 CẠNH TƯƠNG ỨNG)
⇒ΔBOC CÂN TẠI O
Hình vẽ:
a) Xét \(\Delta\)ABD và \(\Delta\)ACE có:
AB = AC ( \(\Delta\)ABC cân )
^BAD = ^CAE ( ^A chung )
^ADB = ^AEC = 90o
=> \(\Delta\)ABD = \(\Delta\)ACE ( ch - gn ) => AD = AE ( 1)
Xét \(\Delta\)AEI và \(\Delta\)ADI có:
AI chung
AD = AE ( theo (1) )
^AEI = ^ADI = 90o
=> \(\Delta\)AEI = \(\Delta\)ADI ( ch - cgv )
b) Từ (a) => ^EAI = ^DAI
=> AI là phân giác ^EAD
hay AI là phân giác trong ^BAC (2)
Mặt khác: \(\Delta\)BAC cân tại A có M là trung điểm BC
=> AM là đường trung tuyến \(\Delta\)ABC
=> AM là phân giác trong ^BAC (3)
Từ (2) ; (3) => A; I; M thẳng hàng.
Vì 2 đường cao BD và CE cắt nhau tại I nên I là trực tâm của tam giác ABC
Suy ra AI là đường cao thứ 3 của tam giác ABC, mà tam giác ABC cân tại A nên AI đồng thời là tia phân giác của góc A
Suy ra \(\widehat{EAI}=\widehat{DEI}\)
Xét \(\Delta AEI,\Delta ADI\)có:
\(\widehat{AEI}=\widehat{ADI}=90^0\)
AI chung
\(\widehat{EAI}=\widehat{DEI}\)
=> \(\Delta AEI=\Delta ADI\)(ch-gn)
b) Vì AI là đường cao thứ 3 của tam giác ABC, mà tam giác ABC cân tại A nên AI đồng thời là là trung tuyến ứng với cạnh BC, mà M là trung điểm của BC nên A, I, M thẳng hàng