\(\frac{x+1}{2}\)=\(\frac{18}{x+1}\)
tính hộ mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x\left(x+1\right)=72\)
\(\Leftrightarrow x=8\)
P/s tham khảo nha
Ta có: \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}\)
\(\Leftrightarrow\)(x, y) = (1, 1; 1, - 1; - 1, 1; - 1, - 1)
=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)
=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)
=\(\frac{1}{1.2}-\frac{1}{19.20}\)
=\(\frac{189}{380}\)
Ta có:
\(x+\frac{1}{x}=5\)
\(\Rightarrow\frac{2x+1}{x}=\frac{5x}{x}\)
\(\Rightarrow2x+1-5x=0\)
\(\Rightarrow-3x=-1\Rightarrow x=\frac{1}{3}\)
Thay x=1/3 vào \(x^2+\frac{1}{x^2}=\left(\frac{1}{3}\right)^2+\frac{1}{\left(\frac{1}{3}\right)^2}=\frac{1}{9}+1:\frac{1}{9}=\frac{82}{9}\)
Tương tự với \(x^3+\frac{1}{x^3}\)
x/4=6/8 3x+1/3=5/2 x-3-1/7=0
x.8=4.6=24 3x=5/2-1/3=13/6 x-3=0+1/7=1/7
x=24:8=3 x=13/6:3=13/18 x=1/7+3=22/7
\(\frac{x}{4}=\frac{6}{8}\Rightarrow x\times8=4.6\Rightarrow x=\frac{4.6}{8}3\)
Vậy x=3
3x\(+\frac{1}{3}=\frac{5}{2}\)
3x =\(\frac{5}{2}-\frac{1}{3}\)
3x =\(\frac{13}{6}\)
x =\(\frac{13}{6}:3=\frac{13}{6}.\frac{1}{3}\)
x =\(\frac{13}{18}\)
x-3-\(\frac{1}{7}=0\)
x-3 =0+\(\frac{1}{7}\)
x-3 =\(\frac{1}{7}\)
x =\(\frac{1}{7}+3\)
x =3\(\frac{1}{7}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x+1}{x+1}-\frac{1}{x+1}=\frac{x}{x+1}\)
\((1999x1998+1998x1997)x(1+\frac{1}{2}\)\(:1\frac{1}{2}\)\(-1\frac{1}{3}\)\()\)
= \((1999x1998+1998x1997)x\)\((1+\frac{1}{2}\)\(:\frac{3}{2}\)\(-\frac{4}{3}\)\()\)
= \((1999x1998+1998x1997)x\)\((1+\frac{1}{3}\)\(-\frac{4}{3}\)\()\)
= \((1999x1998+1998x1997)x\)\((\frac{4}{3}-\frac{4}{3}\)\()\)
=\((1999x1998+1998x1997)x\)0
= 0
Chúc bạn học tốt!
Ta có:
\((1999x1998+1998x1997)x(1+\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3})\)
\(=(1999x1998+1998x1997)x\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)
\(=\left(1999x1998+1998x1997\right)x\left(1+\frac{1}{3}-\frac{4}{3}\right)\)
\(=\left(1999x1998+1998x1997\right)x\left(\frac{4}{3}-\frac{4}{3}\right)\)
\(=\left(1999x1998+1998x1997\right)x0=0\)
Đặt N=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+......+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+\(\frac{2}{4.5}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)