cho nửa đường tron đường kính AB cung AE nhỏ hơn cung AF AF cắt AE tại H HD vuông góc AB chứng minh DEFB là tứ giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O): E \(\in\) (O) (gt).
\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).
Xét tứ giác BEFI:
\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.
b) Xét (O): \(CD\perp AB\) tại I (gt).
AB là đường kính; CD là dây (gt).
\(\Rightarrow\) I là trung điểm của CD.
Xét tam giác ACD:
AI là đường trung tuyến (I là trung điểm của CD).
AI là đường cao \(\left(AI\perp CD\right).\)
\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).
Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)
Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).
Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)
\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)
Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).
\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)
Xét tam giác ACF và tam giác AEC:
\(\widehat{A}chung.\)
\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).
\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)
1: góc AEB=1/2*180=90 độ
góc BEF+góc BIF=180 độ
=>BEFI nội tiếp
2: Xét ΔACF và ΔAEC có
góc ACF=góc AEC
góc CAF chung
=>ΔACF đồng dạng với ΔAEC
=>AC/AE=AF/AC
=>AC^2=AE*AF
a: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{BIF}=180^0\)
Do đó: BEFI là tứ giác nội tiếp
b: Xét ΔACE và ΔAFC có
\(\widehat{CAF}\) chung
\(\widehat{AEC}=\widehat{ACF}\)
Do đó: ΔACE\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AC}=\dfrac{AC}{AF}\)
hay \(AE\cdot AF=AC^2\)
Do E thuộc đường tròn \(\Rightarrow\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{AEB}=90^0\)
Lại có \(\widehat{FIB}=90^0\) (do \(CD\perp AB\) tại I)
\(\Rightarrow\) E và I cùng nhìn BF dưới 1 góc vuông
\(\Rightarrow\) Tứ giác BEFI nội tiếp đường tròn đường kính BF
b.
Xét hai tam giác vuông AIF và AEB có: góc \(\widehat{IAF}\) chung
\(\Rightarrow\Delta_VAIF\sim\Delta_VAEB\left(g.g\right)\Rightarrow\dfrac{AI}{AE}=\dfrac{AF}{AB}\Rightarrow AI.AB=AE.AF\) (1)
Mặt khác \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\Delta ACB\) vuông tại C
Áp dụng hệ thức lượng cho tam giác vuông ACB với đường cao CI:
\(AC^2=AI.AB\) (2)
(1);(2) \(\Rightarrow AE.AF=AC^2\)