K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

a) Xét (O): E \(\in\) (O) (gt).

\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).

Xét tứ giác BEFI:

\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.

b) Xét (O): \(CD\perp AB\) tại I (gt).

                  AB là đường kính; CD là dây (gt).

\(\Rightarrow\) I là trung điểm của CD. 

Xét tam giác ACD: 

AI là đường trung tuyến (I là trung điểm của CD).

AI là đường cao \(\left(AI\perp CD\right).\)

\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).

Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)

Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).

Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)

\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)

Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).

\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)

Xét tam giác ACF và tam giác AEC:

\(\widehat{A}chung.\)

\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)

\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).

\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)

1: góc AEB=1/2*180=90 độ

góc BEF+góc BIF=180 độ

=>BEFI nội tiếp

2: Xét ΔACF và ΔAEC có

góc ACF=góc AEC

góc CAF chung

=>ΔACF đồng dạng với ΔAEC

=>AC/AE=AF/AC

=>AC^2=AE*AF

11 tháng 5 2017

bài náy giống bài của mik quá bn ơi

28 tháng 4 2023

loading...

꧁༺ml78871600༻꧂  

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác BEFI có 

\(\widehat{BEF}+\widehat{BIF}=180^0\)

Do đó: BEFI là tứ giác nội tiếp

b: Xét ΔACE và ΔAFC có

\(\widehat{CAF}\) chung

\(\widehat{AEC}=\widehat{ACF}\)

Do đó: ΔACE\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AC}=\dfrac{AC}{AF}\)

hay \(AE\cdot AF=AC^2\)

NV
8 tháng 1 2022

Do E thuộc đường tròn \(\Rightarrow\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{AEB}=90^0\)

Lại có \(\widehat{FIB}=90^0\) (do \(CD\perp AB\) tại I)

\(\Rightarrow\) E và I cùng nhìn BF dưới 1 góc vuông

\(\Rightarrow\) Tứ giác BEFI nội tiếp đường tròn đường kính BF

b. 

Xét hai tam giác vuông AIF và AEB có: góc \(\widehat{IAF}\) chung

\(\Rightarrow\Delta_VAIF\sim\Delta_VAEB\left(g.g\right)\Rightarrow\dfrac{AI}{AE}=\dfrac{AF}{AB}\Rightarrow AI.AB=AE.AF\) (1)

Mặt khác \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\Delta ACB\) vuông tại C

Áp dụng hệ thức lượng cho tam giác vuông ACB với đường cao CI:

\(AC^2=AI.AB\) (2)

(1);(2) \(\Rightarrow AE.AF=AC^2\)