K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

53n.52+22n.23=125n.25+4n.8

vì 125n đồng dư với 4n

=> dãy trên đồng dư với 4 . 25 + 4n.8=4n.(8+25)=4n.33 

vì 33 chia hết cho 11 =>đpcm

30 tháng 11 2016

2.

Ta có:3n+1 chia hết cho 11-2n

=>3n+1chia hết cho -(2n-11)

=>3n+1 chia hết cho 2n-11

=>2.(3n+1) chia hết cho 2n-11

=>6n+22 chia hết cho 2n-11

=>6n-33+33+22 chia hết cho 2n-11

=>3.(2n-11)+55 chia hết cho 2n-11

=>55 chia hết cho 2n-11

=>2n-11=Ư(55)=(1,5,11,55)

=>2n=(12,16,22,66)

=>n=(6,8,11,33)

Vậy n=6,8,11,33

30 tháng 11 2016

??????????????????????????????????

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

28 tháng 6 2019

Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)

\(A=17\cdot25^2-6\left(25^n-8^n\right)\)

\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)

8 tháng 9 2020

a,A=(n-1).(n+1)-n^2+3n-5 

= n^2 - 1 - n^2 + 3n - 5

= 3n - 6

= 3(n - 2) chia hết cho 3

b,A=(2n-1).(n+1)-n(2n-4)+21 

= 2n^2 + n - 1 - 2n^2 + 4n + 21

= 5n + 20 = 5(n + 4) chia hết cho5

8 tháng 9 2020

A = ( n - 1 )( n + 1 ) - n2 + 3n - 5

= n2 - 1 - n2 + 3n - 5

= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )

A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21

= 2n2 + n - 1 - n( -n ) + 21

= 2n2 + n + 20 + n2

= 3n2 + n + 20 ( cái này chưa chắc được :)) )

18 tháng 12 2015

a)8^7 - 2^18 = 8.(2^18) - 2^18 = 7 . 2^18 = 14 . 2 ^17 

Vì 14 luôn chia hết cho chính nó suy ra 14 . 2 ^17 cũng chia hết cho 14. 

Vậy biểu thức ban đầu luôn chia hết cho 14

b)79^2+79.11=79(79+11)=79.90=79.30.3 chia hết cho 30

c)số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

Tick nha

 

15 tháng 11 2017

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

12 tháng 10 2015

bài 2:

25.15-24

=24.2.15-24

=24.30-24

=24.(30-1)

=24.29

đề sai