Chứng minh rằng
a) \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a, b > 0
b) \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)với a, b, c > 0
c) \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)với \(a,b,c\ge0\)
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)
Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)
\(< =>a^3+b^3\ge a^2b+ab^2\)
\(< =>a+b\ge b+a\left(đpcm\right)\)
Ko chắc lắm vì t ms lớp 6 :((