Cho tam giác ABC vuông tại A,đường cao AH,trung tuyến AM.Trên tia đối tia AM lấy điểm P bất kỳ.Hạ HQ,HR vuông góc với PB,PC.Chứng minh A là trực tâm tam giác PQR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là giao của AC và PB, F là giao của AB và PC
Qua P kẻ đường thẳng d song song với BC
Giả sử E và F lần luợt là giao của AC và AB với d
Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'
Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)
Gọi I là giao của HQ và AB; K là giao của HR và AC
Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)
\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK
Từ (1) => PM _|_ QR hay PA _|_ QR
Gọi S là giao RA và PB
\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)
có tam giác BHQ đồng dạng với tam giác AHE
=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp
Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)
Từ (1) (2) => A là trực tâm tam giác PQR
a) Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
bài 2
a) tam giác ABC cân ở A
=> góc B=góc C
đường cao AD đồng thời là đường trung tuyến
=> DB=DC
xét 2 tam giác BED và CFD có:
BED=CFD(=90độ)
góc B=góc C(chứng minh trên)
BD=CD(chưng minh trên)
=> 2 tam giác BED=CFD(cạnh huyền -góc nhọn)
=> BE=CF(2 cạnh tương ứng)
b)tam giác ABC cân có đường cao đồng thời là tia phân giác
=> góc BAD=góc CAD
AB=AC(gt)
mà BE=CF
AB=AE+BE
AC=AF+CF
=> AE=AF
=> tam giác EAF can ở A có tia phân giác AD đồng thời là đường trung trực của EF
c)ta có : 2 tam giác BED=CFD(theo a)
=> DE=DF(2 cạnh tương ứng)
mà trong 1 tam giác có đường trung tuyến ứng với 1 cạnh =1/2 cạnh đó thì tam giác đó vuông
xét tam giác AFM có FD=ED=DM
=> FD=1/2 EM
=> tam giác AFM vuông ở F
d) xét tam giác BED và CMD có:
DE=DM (gt)
góc EDB=góc NDC(đối đỉnh)
DB=DC(vì AD là đường trung tuyến của BC)
=> 2 tam gica BAD=CMD(c.g.c)
=> góc BED=góc CMD=90độ(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> BE//CM
a)Vì ΔABCΔABC cân tại A => Bˆ=Cˆ
mà AD là đường cao
=> AD là đường trung tuyến ΔABC
=> BD = DC
Xét ΔBED và
BD = DC (cmt)
Bˆ=Cˆ(cmt)
Do đó: ΔBED=ΔCFD(ch−gn)
=> BE = CF (hai cạnh tương ứng)
b) Vì ΔBED=ΔCFD(cmt)
=> ED = DF (hai cạnh tương ứng)
=> ΔEDFcân tại D
=> D ∈ đường trung trực cạnh EF (1)
Xét ΔAEDΔvà ΔAFD có:
AD (chung)
AEDˆ=AFDˆ(=90)
ED = DF (cmt)
Do đó: ΔAED=ΔAFD(cạnh huyền- cạnh góc vuông)
=> AE = AF(hai cạnh tương ứng)
=> ΔAEFcân tại A
=> A ∈ đường trung trực cạnh EF (2)
(1); (2) => AD là đường trung trực cạnh EF
c) ta có: AD ⊥ BC và AD⊥EF
=> BC // EF
Gọi giao điểm của FM và DC là H ta có:
Xét ΔBEDΔBED và có:
ED = DM (gt)
EDBˆ=CDM(đối đỉnh)
BD = DC (cmt)
Do đó: ΔBED=ΔCMD (c-g-c)
mà ΔBED=ΔCFD
=> ΔCMD=ΔCFD
=> CF = CM (hai cạnh tương ứng)
=> ΔFCM cân tại C
=> C ∈đường trung trực cạnh FM (1)
DE = DF (cmt)
mà DE = DM
=> DF = DM
=> ΔFDMcân tại D
=> D ∈ đường trung trực cạnh FM (2)
(1); (2) => DC là đường trung trực cạnh FM
=> DH ⊥⊥ FM
mà BC // EF
=> EF ⊥
=> EFMˆ=900hay ΔEFM vuông tại F
d) Vì ΔBED=ΔCMD
=> BEDˆ=CMDˆ=900hai góc tương ứng)
=> BE//CM(so le trong)
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//DC
=>DC vuông góc AC
b: Xét ΔKAB vuông tại A và ΔKCD vuông tại C có
KA=KC
AB=CD
=>ΔKAB=ΔKCD
=>KB=KD
=>ΔKBD cân tại K
a: Xét ΔAMC và ΔDMB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
=>ABDC là hcn
=>góc ABD=90 độ
c: Xét ΔABC và ΔBAD có
BA chung
BC=AD
AC=BD
=>ΔABC=ΔBAD
d: AM=1/2AD=1/2BC
gọi E là giao điểm của AC và PB, F là giao của AB cà PC
qua P kẻ đường thằng d song song với BC, giả sử E', F' lần lượt là giao của AC, AB với d
ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà BM=CM => PE'=PF'
do đó: \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{BC}\Rightarrow EF//BC\Rightarrow\frac{EA}{AC}=\frac{FA}{AB}\)
gọi I là giao của HQ và AB, K là giao của HR và AC
áp dụng định lý Talet, ta có:
\(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó IK//QR (1)
^MAC=^AIK nên PM _|_ IK
Từ (1) => PM _|_ QR hay PA _|_ QR
Gọi S là giao của RA và PB
\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR},\widehat{BHQ}=\widehat{AHR}\)
có tam giác BHQ đồng dạng với AHE => \(\widehat{QBH}=\widehat{RAH}\)
=> tứ giác BHAS nội tiếp
vậy ^ASB =90o hay SR _|_ PQ
=> A là trực tâm tam giác PQR