K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

1: Ta có: N và Q đối xứng nhau qua AC

nên AC là đường trung trực của NQ

Suy ra: P là trung điểm của NQ và AC\(\perp\)NQ tại P

Xét tứ giác AMNP có 

\(\widehat{PAM}=\widehat{APN}=\widehat{AMN}=90^0\)

Do đó: AMNP là hình chữ nhật

Xét ΔABC có 

N là trung điểm của BC

NP//AB

Do đó: P là trung điểm của AC

Xét tứ giác ANCQ có 

P là trung điểm của AC

P là trung điểm của NP

Do đó: ANCQ là hình bình hành

mà AC\(\perp\)NQ

nên ANCQ là hình thoi

10 tháng 7 2018

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

2 tháng 8 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1/2 AB; AF = 1/2 AC

Nên AE = AF ⇒ AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.