cho so huu ti a/b voi a,b thuoc Z, b>0. Chung minh rang: neu co a<b va >0 thi a/b<a+c/b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y
giai gium minh voi. bạn viết dấu giùm mik nhé
C1 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
<=> ad + ab < bc + ba <=> a[b + d] < b[a + c] <=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác ad < bc => ad + cd < bc + cd
<=> d[a + c] < [b + d]c <=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
Từ đó suy ra \(\frac{a}{b}< \frac{a+c}{b+c}< \frac{c}{d}\)
C2 : Xét hiệu : \(\frac{a+c}{b+d}-\frac{a}{b}=\frac{ab+bc-ab-ad}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0\)
\(\frac{c}{d}-\frac{a+c}{b+d}=\frac{bc+cd-ad-cd}{d(b+d)}=\frac{bc-ad}{d(b+d)}>0\)
\(\frac{a}{b}< \frac{c}{d}\) => ad < bc
=> ad + ab < bc + ab
=> a(b + d) < b(a + c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> ad < bc
=> ad + cd< bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> đccm
b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\); \(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)
ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm
Ta có a<b
=>ac<bc (c>0)
=> ac+ ab < bc+ ab
=> a(b+c) < b(a+c)
=> a/b< a+c/b+c(đpc/m)