K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

Bít làm thì đã làm rùi

khó quá

 

28 tháng 1 2019

\(P=\frac{1}{25a}+\frac{1}{16b}+\frac{1}{9c}=\frac{\frac{1}{25}}{a}+\frac{\frac{1}{16}}{b}+\frac{\frac{1}{9}}{c}\ge\frac{\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)^2}{a+b+c}=\frac{2209}{3600}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{\frac{1}{5}}{a}=\frac{\frac{1}{4}}{b}=\frac{\frac{1}{3}}{c}=\frac{\frac{1}{5}+\frac{1}{4}+\frac{1}{3}}{a+b+c}=\frac{47}{60}\)

\(\Rightarrow\)\(\hept{\begin{cases}a=\frac{1}{5}:\frac{47}{60}=\frac{12}{47}\\b=\frac{1}{4}:\frac{47}{60}=\frac{15}{47}\\c=\frac{1}{3}:\frac{47}{60}=\frac{20}{47}\end{cases}}\)

... 

Phùng Minh Quân làm đúng đó !

k bạn ý đi !!!

22 tháng 5 2020

Đặt \(x=a+b+2c;y=2a+b+c;z=a+b+3c\left(x,y,z>0\right)\)

Từ đó tính được: \(\hept{\begin{cases}a=z+y-2x\\b=5x-y-3z\\c=z-x\end{cases}}\)

Lúc đó \(A=\frac{4\left(z+y-2x\right)}{x}+\frac{\left(5x-y-3z\right)+3\left(z-x\right)}{y}-\frac{8\left(z-x\right)}{z}\)

\(=\frac{4z+4y}{x}-8+\frac{2x}{y}-1+\frac{8x}{z}-8\)

\(=\left(\frac{4y}{x}+\frac{2x}{y}\right)+\left(\frac{4z}{x}+\frac{8x}{z}\right)-17\)

\(\ge2\sqrt{\frac{4y}{x}.\frac{2x}{y}}+2\sqrt{\frac{4z}{x}.\frac{8x}{z}}-17=12\sqrt{2}-17\)(Theo BĐT Cô - si cho 2 số dương)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{4y}{x}=\frac{2x}{y}\\\frac{4z}{x}=\frac{8x}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\sqrt{2}\\z=x\sqrt{2}=2y\end{cases}}\Leftrightarrow\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}\)

Đặt \(\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}=k\left(k>0\right)\)thì \(\hept{\begin{cases}z=2k\\x=\sqrt{2}k\\y=k\end{cases}}\). Lúc đó \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\)

Vậy \(MinA=12\sqrt{2}-17\), đạt được khi \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\left(k>0\right)\)

Trừ mỗi vế cho 1, ta có:

\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)

\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)

tự thay vào

25 tháng 9 2019

trả lời lẹ cho tui cấy

23 tháng 11 2016

Ta có

\(4\left(a+b+c+d\right)^2=\left(\left(a+b\right)+\left(b+c\right)+\left(c+d\right)+\left(d+a\right)\right)^2\)

\(=\left(\frac{\sqrt{a+b}}{\sqrt{b+c+d}}.\sqrt{a+b}.\sqrt{b+c+d}+\frac{\sqrt{b+c}}{\sqrt{c+d+a}}.\sqrt{b+c}.\sqrt{c+d+a}+\frac{\sqrt{c+d}}{\sqrt{d+a+b}}.\sqrt{c+d}.\sqrt{d+a+b}+\frac{\sqrt{d+a}}{\sqrt{a+b+c}}.\sqrt{d+a}.\sqrt{a+b+c}\right)^2\)

\(\le\left(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\right)\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)\)

\(\Rightarrow VT\ge\frac{4\left(a+b+c+d\right)^2}{\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)}\)(1)

Ta chứng minh

\(4\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)\left(2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)

Từ (1) và (2) ta

\(\Rightarrow\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\ge\frac{8}{3}\)

Dấu = xảy ra khi a = b = c = d

23 tháng 11 2016

dau = xay ra khi a=b=c=d

15 tháng 11 2016

tách ra rồi cosi sw