K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

vế tra= -ab+ac-bc+ab=ac-bc=-c(b-c)

11 tháng 4 2020

Các bạn giúp mình nha :))

5 tháng 9 2019

Biến đổi vế trái:

a + b + c 3 = a + + c 3  = a + b 3 +3 a + b 2  c+3(a+b) c 2 + c 3

      =  a 3  + 3 a 2 b + 3a b 2  +  b 3  + 3( a 2 + 2ab +  b 2 )c + 3a c 2  + 3b c 2  +  c 3

      =  a 3  + 3 a 2 b + 3a b 2  +  b 3  + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2  + 3b c 2 + c3

      =  a 3 +  b 3  +  c 3  + 3 a 2 b + 3a b 2 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2  + 3b c 2

      =  a 3  +  b 3  +  c 3  + (3 a 2 b + 3a b 2 ) +( 3 a 2 c + 3abc)+ (3abc + 3 b 2 c)+(3a c 2  + 3b c 2 )

      =  a 3  +  b 3  +  c 3  + 3ab(a + b) + 3ac(a + b) + 3bc(a + b) + 3 c 2 (a + b)

      =  a 3  +  b 3  +  c 3 + 3(a + b)(ab + ac + bc +  c 2 )

      =  a 3  +  b 3  +  c 3  + 3(a + b)[a(b + c) + c(b + c)]

      =  a 3  +  b 3  +  c 3  + 3(a + b)(b + c)(a + c) (đpcm)

25 tháng 7 2017

Ta có \(VT=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right)c^2+c^3\)

\(=a^3+3a^2b+3ab^2+b^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2+ab\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)\right]+c\left(b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Vậy \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

6 tháng 7 2015

(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

17 tháng 9 2018

có tính chất (a+b)n=an+bn à.nếu có chứng minh?

25 tháng 6 2017

Ta có:

+) \(VT=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

\(=2a^2+2b^2+2c^2+2ab+2ac+2bc\)

+) \(VP=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2\)

\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)

Suy ra: \(VT=VP\left(đpcm\right)\)

27 tháng 6 2017

cảm ơn bn nha!

22 tháng 8 2023

Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.

Theo công thức khai triển đa thức, ta có:

(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)

Vậy, hằng đẳng thức được chứng minh.

a: (a+b+c)^2+a^2+b^2+c^2

=a^2+b^2+c^2+a^2+b^2+c^2+2ab+2ac+2bc

=(a^2+2ab+b^2)+(b^2+2bc+c^2)+(a^2+2ac+c^2)

=(a+b)^2+(b+c)^2+(c+a)^2

b: (x+y)^4-2(x^2+xy+y^2)^2

=(x^2+2xy+y^2)^2-2(x^2+xy+y^2)^2

=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4xy^3-2(x^4+x^2y^2+y^4+2x^3y+2x^2y^2+2xy^3)

=-x^4-y^4

=>ĐPCM

25 tháng 8 2021

(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

29 tháng 6 2019

#)Giải :

Ta có : \(\left(a+b+c\right)^3\)

\(=\left(\left(a+b\right)+c\right)^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+3\left(a+b\right)\left(ab+c\left(a+b+c\right)\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Hay chính là \(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrowđpcm\)

29 tháng 6 2019

ta có:

VT=(a+b+c)^3=[(a+b)+c]^3

                  =(a+b)^3+c^3+3(a+b)c(a+b+c)

                 =a^3+b^3+c^3+3ab(a+b)+3c(a+b+c)(a+b)

                 =a^3+b^3+c^3+3(a+b)(ab+ac+cb+c^2)

                 =a^3+b^3+c^3+3(a+b)(b+c)(c+a)

=>VT=VP( đpcm)

29 tháng 10 2015

(a+b+c)^3

=(a+b)^3+3(a+b)^2c+3(a+b)c^2+c^3

=a^3+3a^2b+3ab^2+b^3+3(a^2+2ab+b^2)c+3(a+b)c^2+c^3

=a^3+b^3+c^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2

=a^3+b^3+c^3+(3a^2c+3abc)+(3abc+3b^2c)+(3ac^2+3bc^2)

=a^3+b^3+c^3+3ac(a+b)+3bc(a+b)+3c^2(a+b)

=a^3+b^3+c^3+3(a+b)(ac+bc+c^2)

=a^3+b^3+c^3+3(a+b)[(ac+bc)+c^2]

=a^3+b^3+c^3+3(a+b)c(a+b+c)