Chứng minh hằng đẳng thức: -a.(b-c)-b.(c-a)=-c.(b-c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế trái:
a + b + c 3 = a + + c 3 = a + b 3 +3 a + b 2 c+3(a+b) c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3( a 2 + 2ab + b 2 )c + 3a c 2 + 3b c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2 + c3
= a 3 + b 3 + c 3 + 3 a 2 b + 3a b 2 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2
= a 3 + b 3 + c 3 + (3 a 2 b + 3a b 2 ) +( 3 a 2 c + 3abc)+ (3abc + 3 b 2 c)+(3a c 2 + 3b c 2 )
= a 3 + b 3 + c 3 + 3ab(a + b) + 3ac(a + b) + 3bc(a + b) + 3 c 2 (a + b)
= a 3 + b 3 + c 3 + 3(a + b)(ab + ac + bc + c 2 )
= a 3 + b 3 + c 3 + 3(a + b)[a(b + c) + c(b + c)]
= a 3 + b 3 + c 3 + 3(a + b)(b + c)(a + c) (đpcm)
Ta có \(VT=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right)c^2+c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2+ab\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)\right]+c\left(b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
Vậy \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
Ta có:
+) \(VT=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2ac+2bc\)
+) \(VP=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
Suy ra: \(VT=VP\left(đpcm\right)\)
a: (a+b+c)^2+a^2+b^2+c^2
=a^2+b^2+c^2+a^2+b^2+c^2+2ab+2ac+2bc
=(a^2+2ab+b^2)+(b^2+2bc+c^2)+(a^2+2ac+c^2)
=(a+b)^2+(b+c)^2+(c+a)^2
b: (x+y)^4-2(x^2+xy+y^2)^2
=(x^2+2xy+y^2)^2-2(x^2+xy+y^2)^2
=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4xy^3-2(x^4+x^2y^2+y^4+2x^3y+2x^2y^2+2xy^3)
=-x^4-y^4
=>ĐPCM
#)Giải :
Ta có : \(\left(a+b+c\right)^3\)
\(=\left(\left(a+b\right)+c\right)^3\)
\(=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+3\left(a+b\right)\left(ab+c\left(a+b+c\right)\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Hay chính là \(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrowđpcm\)
ta có:
VT=(a+b+c)^3=[(a+b)+c]^3
=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3ab(a+b)+3c(a+b+c)(a+b)
=a^3+b^3+c^3+3(a+b)(ab+ac+cb+c^2)
=a^3+b^3+c^3+3(a+b)(b+c)(c+a)
=>VT=VP( đpcm)
(a+b+c)^3
=(a+b)^3+3(a+b)^2c+3(a+b)c^2+c^3
=a^3+3a^2b+3ab^2+b^3+3(a^2+2ab+b^2)c+3(a+b)c^2+c^3
=a^3+b^3+c^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2
=a^3+b^3+c^3+(3a^2c+3abc)+(3abc+3b^2c)+(3ac^2+3bc^2)
=a^3+b^3+c^3+3ac(a+b)+3bc(a+b)+3c^2(a+b)
=a^3+b^3+c^3+3(a+b)(ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)[(ac+bc)+c^2]
=a^3+b^3+c^3+3(a+b)c(a+b+c)
vế tra= -ab+ac-bc+ab=ac-bc=-c(b-c)
Các bạn giúp mình nha :))