K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

Tứ giác FEAH có: \(\widehat{FAH}=\widehat{AEH}=90^o\)

=> Tứ giác FEAH nội tiếp => \(\widehat{HEF}=\widehat{FAH}\)

Tứ giác ABDE có: \(\widehat{ADB}=\widehat{AEB}=90^o\)

=> Tứ giác ABDE nội tiếp => \(\widehat{BAD}=\widehat{BED}\)

Vậy \(\widehat{HEF}=\widehat{BED}\)

Xét \(\Delta\)HIE \(\left(\widehat{HIE}=90^o\right)\)và \(\Delta\)HKE \(\left(\widehat{HKE}=90^o\right)\)có:

EH chung

\(\widehat{HEI}=\widehat{HEK}\)

=> \(\Delta HIE=\Delta HKE\) (cạnh huyền-góc nhọn)

=> \(\hept{\begin{cases}EI=EK\\HI=HK\end{cases}}\)(2 cạnh tương ứng)

=> \(\Delta\)KEI cân tại E, \(\Delta\)HIK cân tại H

\(\Rightarrow\widehat{KIE}=\frac{1}{2}\widehat{IEK}\Rightarrow\widehat{KIE}+\widehat{FAH}=90^o\)

Mà \(\widehat{MHF}=\widehat{FAH}=90^o\)

Do đó: \(\widehat{KIE}=\widehat{MHF}\)=> Tứ giác FIMH nội tiếp => \(\widehat{MHF}=\widehat{HIF}=90^o\)

Tứ giác HMNK có: \(\widehat{HMN}=\widehat{HKN}=90^o\)=> Tứ giác HMNK nội tiếp

Ta có: \(\hept{\begin{cases}\widehat{HFN}=\widehat{HIK}\\\widehat{HNM}=\widehat{HIK}\\\widehat{HIK}=\widehat{HKI}\end{cases}}\)

=> \(\Delta\)HFN đồng dạng \(\Delta\)HIK (g.g)

=> \(\frac{HF}{HI}=\frac{HN}{HK},HI=HK\Rightarrow HF=HN\)

\(\Delta\)HFN cân tại H, HM _|_ FN => HM là đường trung tuyến của tam giác HFN

FM _|_ AD, BD _|_ AD => FM//BD

MF=MN, DB=DC nên \(\frac{AM}{AD}=\frac{MN}{DS}\)

Xét \(\Delta\)AMN và \(\Delta\)ADS có:

\(\widehat{AMN}=\widehat{ADS}\left(MN//BS\right),\frac{AM}{AD}=\frac{MN}{DS}\)

=> \(\Delta\)AMN đồng dạng \(\Delta\)ADS (c.g.c)

=> \(\widehat{MAN}=\widehat{DAS}\)

=> 2 tia AN, AS trùng nhau => A,N,S thẳng hàng

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

31 tháng 1 2017

Đề thì đúng nhưng đề này là đề học sinh giỏi thì thường quá!

Bạn chỉ cần dùng tứ giác nội tiếp là sẽ ra \(DH\) là phân giác \(\widehat{EDF}\) (tin mình đi). Tương tự với mấy đỉnh kia suy ra đpcm.

31 tháng 1 2017

sai đề rồi đáng lẽ ABC là tam giác đều hoặc các đường cao AD BE CF là những đường trung trực

Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABD}=\widehat{AKC}\)

Xét (O) có

\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)

\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)

Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)

Xét ΔADB vuông tại D và ΔACK vuông tại C có 

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB\(\sim\)ΔACK(g-g)

27 tháng 4 2023

giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiêp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có

góc DAB=góc DCH

=>ΔDAB đồng dạng vơi ΔDCH

=>DA/DC=DB/DH

=>DA*DH=DB*DC

c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

=>ΔHDC đồng dạng vơi ΔHFA

=>HD/HF=HC/HA

=>HF*HC=HD*HA

Xet ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE=HD*HA