Tìm x,y thuộc N :
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
mình đang cần gấp . giải giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
Ta thấy: 9.1 7/8=9.15/8=16,875; 12/35.31,5=10,8
=>Không có số nào là y
Y chang câu mik luôn, vô trang cá nhân của mik tìm là có đấy! Bạn soyeon_ Tiểu bàng giải làm đúng đó nhé!
Ta có: \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-y=3x+3y\)
\(\Rightarrow12x-3x=y+3y\)
\(\Rightarrow9x=4y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{9}\)
\(\Rightarrow x=4;y=9\)
a)ta có 2y\(⋮\)2 nên là số chẵn \(\Rightarrow\)2y+1 là số lẻ
\(18=9\times2=6\times3\)
Với trường hợp 18=9.2 do 2y+1 là số lẻ nên 2y+1=9 <=>2y=8 =>y=4
x-3=2 <=> x=5
Với trường hợp 18=6.3 vì 2y+1 là số lẻ nên 2y+1=3 <=> 2y=2 =>y=1
thì x-3=6 <=> x=9
Vậy {x;y}\(\in\){(4;5) ; (1;9) }
ta có 2y ⋮ 2
nên là số chẵn
⇒2y+1 là số lẻ
18 = 9 × 2 = 6 × 3
Với trường hợp 18=9.2
do 2y+1 là số lẻ nên 2y+1=9
<=>2y=8
=>y=4 x‐3=2
<=> x=5
Với trường hợp 18=6.3
vì 2y+1 là số lẻ nên 2y+1=3
<=> 2y=2
=>y=1 thì x‐3=6
<=> x=9
Vậy {x;y} ∈ {﴾4;5﴿ ; ﴾1;9﴿ }
từ giả thiết =>\(x+y+z+t=10\)
Ta có \(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\Rightarrow\frac{1}{4x}=\frac{2}{4y}=\frac{3}{4z}=\frac{4}{4t}=\frac{1+2+3+4}{4x+4y+4z+4t}=\frac{10}{4\left(x+y+z+t\right)}=\frac{10}{40}=\frac{1}{4}\)
đề t k bt là gì nên chỉ bt làm đến đây , còn bbước nào nữa thì bạn tự làm nốt nhé !
^_^
\(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\)
\(\frac{1}{4x}=\frac{1}{2y}=\frac{1}{\frac{4}{3}z}=\frac{1}{t}\)
\(\Rightarrow4x=2y=\frac{4}{3}z=t\)
\(\Rightarrow\frac{4x}{4}=\frac{2y}{4}=\frac{4z}{3.4}=\frac{t}{4}\)
hay \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}\)
Mà x + y + z + t - 10 = 0
x + y + z + t = 10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}=\frac{x+y+z+t}{1+2+3+4}=\frac{10}{10}=1\)
Từ đó suy ra : x = 1 ; y = 2 ; z = 3 ; t = 4
\(\Leftrightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
\(\Leftrightarrow2xy-54=y\)
\(\Leftrightarrow y\left(2x-1\right)=54\)
Xét bảng ra