Biển số xe máy của tỉnh A (nếu không kể mã số tỉnh) có 6 kí tự, trong đó kí tự ở vị trí đầu tiên là một chữ cái (trong bảng 26 cái tiếng Anh), kí tự ở vị trí thứ hai là một chữ số thuộc tập {1;2;3…;9} mỗi kí tự ở bốn vị trí tiếp theo là một chữ số thuộc tập {1;2;3…;9}. Hỏi nếu chỉ dùng một mã số tỉnh thì tỉnh A có thể làm được nhiều nhất bao nhiêu biển số xe máy khác nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : A
Giả sử mật khẩu là a1a2a3a4a5a6
Có 26 cách chọn a1
Có 9 cách chọn a2
Có 10 cách chọn a3
Có 10 cách chọn a4
Có 10 cách chọn a5
Có 10 cách chọn a6
Vậy theo qui tắc nhân ta có 26.9.10.10.10.10=2340000 mật khẩu.
Số mật khẩu có thể lập được là:
\(2\cdot9\cdot C^4_{10}=3780\left(cái\right)\)
+) Số cách chọn 3 kí tự đầu tiên là 3 chữ cái trong bảng gồm 26 chữ cái in thường là: \(A_{26}^3\) (cách)
+) Số cách chọn 5 kí tự tiếp theo là chữ số là: \(A_{10}^5\) (cách)
+) Áp dụng quy tắc nhân, số mật khẩu Việt có thể tạo ra là: \(A_{26}^3.A_{10}^5\)(mật khẩu)
+) Số cách chọn 4 kí tự đầu tiên là: \(A_{10}^4\) (cách chọn)
+) Số cách chọn 2 kí tự tiếp theo là: \(C_{26}^1.C_{26}^1\) (cách chọn)
+) Số cách chọn 1 kí tự tiếp theo là: \(C_{26}^1\) (cách chọn)
+) Số cách chọn 1 kí tự cuối cùng là: \(C_{10}^1\) (cách chọn)
+) Áp dụng quy tắc nhân, ta có số mật khẩu có thể tạo thành là:
\(A_{10}^4.C_{26}^1.C_{26}^1.C_{26}^1.C_{10}^1\) ( mật khẩu)
Có 26 chữ cái tiếng Anh và 10 chữ số (từ 0 đến 9).
a) Để tạo một mã bưu chính, ta thực hiện sáu hành động liên tiếp: chọn chữ cái đầu tiên, chọn chữ số thứ hai, chọn chữ cái thứ ba, chọn chữ số thứ tư, chọn chữ cái thứ năm và chọn chữ số thứ sáu.
Mỗi chữ cái được chọn từ 26 chữ cái tiếng Anh nên có 26 cách chọn một chữ cái.
Mỗi chữ số được chọn từ 10 chữ số nên có 10 cách chọn một chữ số.
Vậy có thể tạo được 26 . 10 . 26 . 10 . 26 . 10 = 17 576 000 mã bưu chính.
b) Để tạo một mã bưu chính bắt đầu bằng chữ S, ta thực hiện sáu hành động liên tiếp: chọn chữ cái đầu tiên là S, chọn chữ số thứ hai, chọn chữ cái thứ ba, chọn chữ số thứ tư, chọn chữ cái thứ năm và chọn chữ số thứ sáu.
Chữ cái đầu tiên là S: có 1 cách chọn.
Chọn các chữ cái còn lại, mỗi vị trí có 26 cách chọn.
Chọn các chữ số, mỗi vị trí có 10 cách chọn.
Vậy có thể tạo được 1 . 10 . 26 . 10 . 26 . 10 = 676 000 mã bắt đầu bằng chữ S.
c) Để tạo một mã bưu chính bắt đầu bằng chữ S và kết thúc bằng chữ số 8, ta thực hiện sáu hành động liên tiếp: chọn chữ cái đầu tiên là S, chọn chữ số thứ hai, chọn chữ cái thứ ba, chọn chữ số thứ tư, chọn chữ cái thứ năm và chọn chữ số thứ sáu là chữ số 8.
Chữ cái đầu tiên là S: có 1 cách chọn.
Chọn các chữ cái còn lại, mỗi vị trí có 26 cách chọn.
Chọn chữ số thứ sáu (kết thúc) là 8: có 1 cách chọn.
Chọn các chữ số còn lại, mỗi vị trí có 10 cách chọn.
Vậy có thể tạo được 1 . 10 . 26 . 10 . 26 . 1 = 67 600 mã bắt đầu bằng chữ S và kết thúc bằng chữ số 8.
Ta có 26 cách chọn chữ cái để xếp ở vị trí đầu tiên.
Tương tự có 9 cách chọn chữ số cho vị trí thứ 2 và có 10 cách chọn chữ số cho mỗi vị trí trong bốn vị trí còn lại.
Theo quy tắc nhân , ta có tất cả:
26.9.10.10.10.10=2340000( biển số)