CMR: \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)
=> VT >/ 2
Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)
\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)
Dấu '' = '' xảy ra khi a = b + c+ d
b = c+d+a
c = b+a+d
d = a+b+c
Hình như ko có a ; b; c ;d
Thôi làm luôn tìm ko ra thì chỉ phí time
Ta cm bổ đề
\(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\Leftrightarrow\sqrt{\frac{b+c+d}{a}}\le\frac{a+b+c+d}{2a}\)
\(=\frac{\frac{b+c+d}{a}+1}{2}\ge\sqrt{\frac{b+c+d}{a}}\) (đúng)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế
\(VT\ge\frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2=VP\)
bài này vừa làm hôm qua xong chả nhớ ở web nào cả
nhưng c/m \(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\) bằng AM-GM nhé đợi t tìm link cho đỡ phải làm lại
Xét: \(\sqrt{\frac{a}{b+c+d}}=\frac{\sqrt{a}}{\sqrt{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)
\(\sqrt{\frac{b}{c+d+a}}=\frac{\sqrt{b}}{\sqrt{c+d+a}}=\frac{b}{\sqrt{b\left(c+d+a\right)}}\)
\(\sqrt{\frac{c}{d+a+b}}=\frac{\sqrt{c}}{\sqrt{d+a+b}}=\frac{c}{\sqrt{c\left(d+a+b\right)}}\)
\(\sqrt{\frac{d}{a+b+c}}=\frac{\sqrt{d}}{\sqrt{a+b+c}}=\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\Rightarrow VT=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\\\sqrt{b\left(c+d+a\right)}\le\frac{a+b+c+d}{2}\\\sqrt{c\left(d+a+b\right)}\le\frac{a+b+c+d}{2}\\\sqrt{d\left(a+b+c\right)}\le\frac{a+b+c+d}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\\\frac{b}{\sqrt{b\left(c+d+a\right)}}\ge\frac{2b}{a+b+c+d}\\\frac{c}{\sqrt{c\left(d+a+b\right)}}\ge\frac{2c}{a+b+c+d}\\\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge\frac{2d}{a+b+c+d}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}\)
\(\Rightarrow VT\ge\frac{2\left(a+b+c+d\right)}{a+b+c+d}\)
\(\Rightarrow VT\ge2\)
\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge2\)
\(\Leftrightarrow\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\ge2\) ( đpcm )
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(\frac{b+c+d}{a}=\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\left(\frac{b+c+d+a}{2a}\right)^2\)
\(\sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\). Tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\geq \frac{2(a+b+c+d)}{a+b+c+d}=2\) (đpcm)
sửa đề lại bạn nhé =) \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\Rightarrow\hept{\begin{cases}a=kA\\b=kB\end{cases}va\hept{\begin{cases}c=kC\\d=kD\end{cases}}}\)
theo đề bài ta có \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)
=\(\sqrt{k}\left(A+B+C+D\right)\left(1\right)\)
ta lại có \(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(kA+kB+kC+kD\right)\left(A+B+C+D\right)}\)
=\(\sqrt{k\left(A+B+C+D\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\left(2\right)\)
(1),(2)=> \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Ta có: \(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\sqrt{a^2-ab+b^2}}=\left(a+b\right)\sqrt{a^2-ab+b^2}\)
\(=\sqrt{a+b}\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}=\sqrt{a+b}\sqrt{a^3+b^3}\)
\(=\sqrt{\left(a+b\right)\left(a^3+b^3\right)}=\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)
Áp dụng BĐT Bunhi... ta có:
\(\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)^2\ge\left(\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}\right)^2\)
\(\Rightarrow\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)+\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)\(\ge\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\sqrt{a^4}+\sqrt{b^4}=a^2+b^2\)
\(\Rightarrow\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}\ge a^2+b^2\) (1)
Tương tự ta có: \(\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}\ge b^2+c^2\) (2)
\(\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}\ge c^2+d^2\)(3)
\(\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\ge d^2+a^2\)(4)
Cộng vế với vế của 1,2,3,4 ta được:
\(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}+\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}+\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}+\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\)\(\ge2\left(a^2+b^2+c^2+d^2\right)\left(\text{đ}pcm\right)\)
Hoặc \(\left(a+b\right)\sqrt{a^2-ab+b^2}\ge a^2+b^2\Leftrightarrow ab\left(a-b\right)^2\ge0\)(bình phương lên)
\(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=\frac{a+b+c+d}{A+B+C+D}\)
\(\Rightarrow A.a=\frac{A^2\left(a+b+c+d\right)}{A+B+C+D}\Rightarrow\sqrt{Aa}=\frac{A\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\)
Tương tự ta có: \(\sqrt{Bb}=\frac{B\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\); \(\sqrt{Cc}=\frac{C\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\); \(\sqrt{Dd}=\frac{D\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\)
Cộng vế với vế:
\(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}=\frac{\sqrt{a+b+c+d}}{\sqrt{A+B+C+D}}\left(A+B+C+D\right)=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Làm cách này chắt đuoc
Ap dung BDT Bun-nhi-a-cop-xki ta co:
\(\left(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}\right)^2\le\left(A+B+C+D\right)\left(a+b+c+d\right)\)
\(\Rightarrow\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}\le\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)Dau '=' xay ra khi \(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\frac{D}{d}\)hay \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
Ma theo gia thuyet cua de bai thi:
\(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
Nen dang thuc tren ton tai voi \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
Ta có: \(\sqrt{\frac{a}{b+c+d}}=\sqrt{\frac{a^2}{a\left(b+c+d\right)}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)
Xét \(\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\)
\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
\(\Rightarrow\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)
(a,b,c,d>0)
Cmtt: \(\hept{\begin{cases}\sqrt{\frac{b}{a+c+d}}\ge\frac{2b}{a+b+c+d}\\\sqrt{\frac{c}{b+a+d}}\ge\frac{2c}{a+b+c+d}\\\sqrt{\frac{d}{a+b+c}}\ge\frac{2d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{d}{a+b+c}}\)\(\ge\frac{2a+2b+2c+2d}{a+b+c+d}=2\)
Đến đây tự xử lí phần dấu "="