tìm tổng dãy sau (1-1/97)*(1-1/98)*(1-1/99)*...*(1-1/1000)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bx3=1x3/1x2x3x4+1x3/2x3x4x5+...+1x3/97x98x99x100
Bx3=3/1x2x3x4+3/2x3x4x5+...+3/97x98x99x100
Bx3=1/1x2x3-1/2x3x4+1/2x3x4-1/3x4x5+...+1/97x98x99-1/98x99x100
BX3=1/1x2x3-1/98x99x100
BX3=1/6-1/970200
Bx3=161700/970200-1/970200
Bx3=161399/970200
B=161699/970200:3
B=161699/970200x1/3
B=161699/2910600
\(B=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+....+\frac{1}{97.98.99.100}\)
\(B=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{100-97}{97.98.99.100}\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(B=\frac{1}{3}\cdot\frac{161699}{970200}=\frac{161699}{2910600}\)
1. C = 100 - 99 + 98 - 97 + ... + 2 - 1
C = ( 100 - 99 ) + ... + ( 98 - 97 )
C có 50 cặp số
C = 1 . 50
C = 50
2. Số thứ 50 của dãy số đó là :
4 . 49 + 1 = 197
(1-1/97) x (1-1/98) x (1-1/99) x (1-1/1000) = 96/97 x 97/98 x 98/99 x 999/1000
= 96 x 97 x 98 x 999 / 97 x 98 x 99 x 1000 = 12 x 111 / 11 x 125 = 1332 / 1375
\(C=\left(1-\frac{1}{97}\right).\left(1-\frac{1}{98}\right).\left(1-\frac{1}{99}\right)......\left(1-\frac{1}{1000}\right)\)
\(C=\frac{96}{97}.\frac{97}{98}.\frac{98}{99}........\frac{999}{1000}\)
\(C=\frac{96}{1000}\)
\(C=\frac{12}{125}\)