Chứng minh rằng 10^2007 +8 chia hết cho 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
có 102008 + 125 = 1000...000125 (2005 số 0)
có 1 + 0 + 0 + 0 +...+ 1 + 2 + 5 = 9
=> 1000...000125 (2005 số 0) chia hết cho 9
mà 1000...000125 (2005 số 0) chia hết cho 5
5 và 9 nguyên tố cùng nhau
=> 1000...000125 (2005 số 0) chia hết cho 45
=> 102008 + 125 chia hết cho 45
câu b
52008 + 52007 + 52006 = 52006(52 + 5 + 1) = 52006 . 31
=> 52006 . 31 chia hết 31
=> 52008 + 52007 + 52006 chia hết 31
2 câu kia để mình xem lại 1 chút nhé, có j đó ko đựoc đúng, hoặc có thể là mình làm sai
chúc may mắn
b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)
c: 5^5-5^4+5^3
=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
e:
72^63=(3^2*2^3)^63=3^126*2^189
\(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)
\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189
=>ĐPCM
g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
Ta có:
\(\left\{{}\begin{matrix}7^1=\overline{...7}\\7^2=\overline{...9}\\7^3=\overline{...3}\\7^4=\overline{....1}\end{matrix}\right.\) Như vậy \(7^{2007}=\left(7^3\right)^{669}=\overline{...3}\)
\(8^{2008}=\left(2^3\right)^{2008}=2^{6024}=\left(2^4\right)^{1506}=\overline{....6}\)
Lại có:
\(\left\{{}\begin{matrix}9^1=9\\9^2=81\end{matrix}\right.\) Như vậy với số mũ chẵn thì có tận cùng = 1,lẻ có tận cùng =9
Như vậy \(9^{2009}=\overline{...9}\)
Trở lại bài toán
\(7^{2007}+8^{2008}-9^{2009}=\overline{...3}+\overline{...6}-\overline{...9}=\overline{...0}⋮10\)
\(A=7^{2007}+8^{2008}-9^{2009}\)\(=\left(7^4\right)^{501}.7^3+\left(8^4\right)^{502}-\left(9^2\right)^{1004}.9\)
\(=\left(...1\right)^{501}.7^3+\left(...6\right)^{502}-\left(..1\right)^{1004}.9\)
\(=\left(...1\right).7^3+\left(...6\right)-\left(...9\right)\)
\(=\left(...3\right)+\left(...6\right)-\left(...9\right)=\left(....0\right)\).
vậy A có tận cùng là 0 nên A chia hết cho 10.