Cho ΔABCnhọn, đường cao BD, CE cắt nhau tại H
a) Chứng minh rằng AD.AC = AE.AB và ^ABC= ^ADE
b) Chứng minh rằng ΔHEDvà ΔHBCđồng dạng
c)Chứng minh rằng BE.BA CD.CA = BC²
d) Nếu ΔABCđều hãy tính tỉ số diện tíchΔHEDvà diện tích ΔABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta ADB\)zà \(\Delta AEC\)có
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}=90^0\end{cases}}\)
\(=>\Delta ADB~\Delta AEC\left(g.g\right)\)
\(=>\frac{AD}{AE}=\frac{AB}{AC}=>AD.AC=AB.AE\left(dpcm\right)\)
\(taco\left(\frac{AD}{AE}=\frac{AB}{AC}=>\frac{AD}{AB}=\frac{AE}{AC}\right)\)
xét \(\Delta ADE\)zà \(\Delta ABCco\)
\(\hept{\begin{cases}\widehat{A}chung\\\frac{AD}{AB}=\frac{AE}{AC}\end{cases}=>\Delta ABE~\Delta ABC\left(c.g.c\right)}\)
=>\(\widehat{ADE}=\widehat{ABC}\left(dpcm\right)\)
c) Xét tam giác AEC zà tam giác HDC óc
góc AEC= góc HDC =90 độ
góc HCE chung
=> tam giác AEC~ tam giác HDC
=>\(\frac{AC}{HC}=\frac{EC}{DC}=>AC.DC=EC.HC\left(1\right)\)
xét tam giác BEC zà tam giác HEA có
góc BEC= góc AEH= 90 độ
góc BCE = góc EAH ( cùng phụ zới góc EBC )
=> tam giác BEC ~ tam giác HEA (g.g)
=>\(\frac{BE}{HE}=\frac{EC}{EA}=>BE.EA=EC.HE\left(2\right)\)
từ 1 zà 2 suy ra
\(BE.BA+CD.CA=BH.BD+CH.CE\)
kẻ AH zuông goc zới BC cắt BC tại F
Tự CM \(\hept{\begin{cases}\Delta CFH~\Delta CEB\\\Delta BFH~\Delta BDC\end{cases}=>\hept{\begin{cases}CF.CB=CH.CE\\BF.BC=BH.BD\end{cases}=>BE.BA+CD.CA=CF.CB+BF.CB}}\)
\(=BC.\left(CF+BF\right)=BC^2\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
a, BHCK có I là trung điểm hai đường chéo
b, Ta có ∆ABK, ∆ACK vuông tại B và C nên A,B,K,C nằm trên đường tròn đường kính AK
c, Ta có OI là đường trung bình của ∆AHK => OI//AH
d, Gọi AH cắt BC tại M. Ta có BE.BA = BM.BC và CA.CD = CM.BC => ĐPCM
Cảm ơn