Tìm x,y thuộc Z biết :
(x + 2010)^2010 + |y-2010|^2011 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
\(=>\frac{x^{2010}}{a^2+b^2+c^2+d^2}+\frac{y^{2010}}{a^2+b^2+c^2+d^2}+\frac{z^{2010}}{a^2+b^2+c^2+d^2}+\frac{t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
\(=>\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)
\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+z^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)
\(Do\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\end{matrix}\right.\)
\(=>\left\{\begin{matrix}x^{2010}=0\\y^{2010}=0\\z^{2010}=0\\t^{2010}=0\end{matrix}\right.\)
\(=>\left\{\begin{matrix}x=0\\y=0\\z=0\\t=0\end{matrix}\right.\)
Ta có
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
\(=>T=0^{2011}+0^{2011}+0^{2011}+0^{2011}\\ T=0+0+0+0\\ T=0\)
(x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
\(\left(x+2010\right)^{2010}+|y-2010|^{2011}=0\)=> \(\left(x+2010\right)^{2010}=0\) và \(|y-2010|^{2011}=0\)
=> x+2010=0 => x =-2010
y-2010 =0 => y =2010
Nếu sai bn sửa giùm mk nha!!!
\(\left(x+2010\right)^{2010}+\left|y-2010\right|^{2011}=0\)
Vì \(\left(x+2010\right)^{2010}\ge0\forall x\); \(\left|y-2010\right|\ge0\forall y\)\(\Rightarrow\left|y-2010\right|^{2011}\ge0\forall y\)\(\Rightarrow\left(x+2010\right)^{2010}+\left|y-2010\right|^{2011}\ge0\forall x,y\)
mà \(\left(x+2010\right)^{2010}+\left|y-2010\right|^{2011}=0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2010=0\\y-2010=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2010\\y=2010\end{cases}}\)
Vậy \(x=-2010\)và \(y=2010\)