K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

28 tháng 9 2023

a) P = 2x(-3x + 2) - (x + 2)² + 8x² - 1

= -6x² + 4x - x² - 4x - 4 + 8x² - 1

= (-6x² - x² + 8x²) + (4x - 4x) + (-4 - 1)

= x² - 5

b) Thay x = 3 vào P, ta được:

P = 3² - 5

= 4

c) Để P = -1 thì x² - 5 = -1

x² = -1 + 5

x² = 4

x = 2 hoặc x = -2

Vậy x = 2; x = -2 thì P = -1

28 tháng 9 2023

\(a,P=2x\left(-3x+2\right)-\left(x+2\right)^2+8x^2-1\)

\(=-6x^2+4x-\left(x^2+4x+4\right)+8x^2-1\)

\(=-6x^2+4x-x^2-4x-4+8x^2-1\)

\(=\left(-6x^2-x^2+8x^2\right) +\left(4x-4x\right)+\left(-4-1\right)\)

\(=x^2-5\)

Vậy \(P=x^2-5\).

\(b,\) Ta có: \(P=x^2-5\)

Thay \(x=3\) vào \(P\), ta được:

\(P=3^2-5=9-5=4\)

Vậy \(P=4\) khi \(x=3\).

\(c,\) Có: \(P=-1\)

\(\Leftrightarrow x^2-5=-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(P=-1\) khi \(x\in\left\{2;-2\right\}\).

#\(Toru\)

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

Bạn ghi lại đề chỗ (1-√x /+1) nha bạn

11 tháng 6 2021

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) Để \(P< \dfrac{1}{2}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}< \dfrac{1}{2}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Rightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\sqrt{x}+2}< 0\Rightarrow\dfrac{\sqrt{x}-3}{2\sqrt{x}+2}< 0\)

mà \(2\sqrt{x}+2>0\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)

\(\Rightarrow0\le x< 9\left(x\ne1\right)\)

 

a: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

b: Khi x=9 thì P=9-3+1=7

c: P=3

=>x-căn x-2=0

=>(căn x-2)(căn x+1)=0

=>x=4

1 tháng 12 2021

\(a,P=\dfrac{2x^2+2x+2+2x-1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\\ P=\dfrac{3x^2+10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

29 tháng 5 2021

a) ĐKXĐ: \(x>0,x\ne1\)

\(P=\dfrac{x-2\sqrt{x}}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\dfrac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}+\dfrac{1+2x-2\sqrt{x}}{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}\)

\(=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}+\dfrac{1+2x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x-2\sqrt{x}\right)\sqrt{x}+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1+2x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}+x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(x+\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

b) Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+2>0\\x+\sqrt{x}+1>0\end{matrix}\right.\Rightarrow P>0\)

Vì \(x>0\Rightarrow2x+\sqrt{x}>0\Rightarrow2x+2\sqrt{x}+2-\left(\sqrt{x}+2\right)>0\)

\(\Rightarrow2\left(x+\sqrt{x}+1\right)>\sqrt{x}+2\Rightarrow\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}< 2\)

mà P nguyên \(\Rightarrow\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}=1\Rightarrow\sqrt{x}+2=x+\sqrt{x}+1\)

\(\Rightarrow x-1=0\Rightarrow x=1\) mà \(x\ne1\Rightarrow\) không có x để P nguyên

 

7 tháng 11 2021

\(a,P=\left[\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right]\cdot\dfrac{2x}{1-x}\left(x\ne1;x\ne-1;x\ne0\right)\\ P=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{2x}{1-x}\\ P=-1\cdot\dfrac{2x}{1-x}=\dfrac{2x}{x-1}\\ b,P=2+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{2;3\right\}\left(x\ne-1;x\ne0\right)\\ c,P\le1\Leftrightarrow\dfrac{2x}{x-1}-1\le0\\ \Leftrightarrow\dfrac{x+1}{x-1}\le0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\le0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-1\le x< 1\)

a: \(P=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{x-1}\)

\(=\dfrac{1-1-3x}{3x}\cdot\dfrac{2x}{x-1}\)

\(=\dfrac{-3x}{3x}\cdot\dfrac{2x}{x-1}=\dfrac{-2x}{x-1}\)

 

6 tháng 6 2023

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)