K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

Xét hiệu : \(2x-x^2-1 = -(x^2 -2x+1) = -(x-1)^2\)

Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\)

\(=> ĐPCM\)

8 tháng 4 2020

Ta có 

\((x-1)^2>=0 \) với mọi x

\(x^2-2x+1>=0\)

\(x^2-2x>=-1\)

Chia cả hai vế cho -1 ta đc

\(2x-x^2<=1\) với mọi x

đpcm

a) Ta có: \(\dfrac{x^2+2x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\)

\(=\dfrac{x+1}{x}\)

b) Ta có: \(\dfrac{x^2-4x+3}{x^2-x}\)

\(=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)

\(=\dfrac{x-3}{x}\)

20 tháng 9 2019

Ta có:

+ Phương trình - 2x = 4 ⇔ x = - 2 có tập nghiệm là S = {- 2}

+ Phương trình x/2 = - 1 ⇔ x = - 2 có tập nghiệm là S = {- 2}

→ Hai phương trình có cùng tập nghiệm.

→ Hai phương trình tương đương.

21 tháng 10 2021

a) \(2x^2+2x+1=0\)

\(\Rightarrow2x^2+2x=-1\)

\(\Rightarrow2x\left(x+1\right)=-1\)

⇒ Pt vô nghiệm

 

 

21 tháng 10 2021

a: \(2x^2+2x+1=0\)

\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)

Vì Δ<0 nên phương trình vô nghiệm

17 tháng 6 2019

TXĐ: D = [0; 2]

Giải bài 4 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số đồng biến

⇔ y’ > 0

⇔ 0 < x < 1.

+ Hàm số nghịch biến

⇔ y’ < 0

⇔ 1 < x < 2.

Vậy hàm số đồng biến trên khoảng (0; 1), nghịch biến trên khoảng (1; 2).

10 tháng 10 2023

help me

10 tháng 10 2023

@Kiều Vũ Linh

10 tháng 10 2023

\(a)x^2-6x-2xy+12y\\=(x^2-2xy)-(6x-12y)\\=x(x-2y)-6(x-2y)\\=(x-2y)(x-6)\)

Bạn xem lại đề!

\(b\Big) (3-2x)(3+2x)+(2x+3)(2x-5)+4x\\=3^2-(2x)^2+(4x^2-10x+6x-15)+4x\\=9-4x^2+4x^2-10x+6x-15+4x\\=(9-15)+(-4x^2+4x^2)+(-10x+6x+4x)\\=-6\)

*Đã sửa đề*

\(c\Big) 4(x+1)^2+(2x-1)^2-8(x-1)(x+1)-4x\\=4(x^2+2x+1)+(2x)^2-2\cdot2x\cdot1x+1^2-8(x^2-1^2)-4x\\=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\\=(4x^2+4x^2-8x^2)+(8x-4x-4x)+(4+1+8)\\=13\)

*Đã sửa đề*

\(d\big) (3x+2)^2+(2x-7)^2-2(3x+2)(2x-7)-x^2+36x\\=[(3x+2)^2-2(3x+2)(2x-7)+(2x-7)^2]-x^2+36x\\=[(3x+2)-(2x-7)]^2-x^2+36x\\=(3x+2-2x+7)^2-x^2+36x\\=(x+9)^2-x^2+36x\\=(x+9-x)(x+9+x)+36x\\=9(2x+9)+36x\\=18x+81+36x\)

Bạn xem lại đề!

\(Toru\)

`a,`

`f(x)=x^2+4x+10`

\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)

`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)

`->` Đa thức không có nghiệm (vô nghiệm).

`c,`

`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.

Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)

    \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`b,`

`g(x)=x^2-2x+2017`

Vì \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`d,`

`g(x)=4x^2004+x^2018+1`

Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)

    \(x^{2018}\ge0\text{ }\forall\text{ }x\)

`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

10 tháng 4 2023

cảm ơn bn nha

 

8 tháng 1 2017

Biểu thức  x + 1 x 2 xác định khi x  ≠  0

Biểu thức  x 2 + 1 x 2 + 2 x + 1 1 x + 1 xác định khi x  ≠  0 và x  ≠  - 1

Với điều kiện x  ≠  0 và x  ≠  - 1, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy giá trị của biểu thức  x + 1 x 2 : x 2 + 1 x 2 + 2 x + 1 1 x + 1 bằng 1 với mọi giá trị x  ≠  0 và x  ≠  -1.