Cho x,y là hai số thỏa mãn x+2y=3. Tìm GTNN của E= x^2 +2y^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Từ x + 2y =3 => x = 3 - 2y.Thay x = 3 -2y vào biểu thức E ,ta có :
E = x2 +2y2 =(3-2y)2 + 2y2 =6y2 -12y + 9
= \(6.\left(y^2-2y+\frac{3}{2}\right)=6.\left[\left(y^2-2y+1\right)+\frac{1}{2}\right]=6.\left[\left(y-1\right)^2+\frac{1}{2}\right]=6\left(y-1\right)^2+3\)
Do (y-1)2 \(\ge\)0=> E\(\ge\)3.
Vậy MINE khi y = 1,x =3 - 2.1 =1
x+2y=3⇒y=3−x2⇒y=3−x2(1)
Thế (1) vào E ta được : E=x22+x2−6x+92x2−6x+92
⇔2E=2x2+x2−6x+9⇔2E=3x2−6x+9⇔2E=2x2+x2−6x+9⇔2E=3x2−6x+9
⇔2E=3(x2−2x+1+2)⇔E=32[(x−1)2+2]⇔2E=3(x2−2x+1+2)⇔E=32[(x−1)2+2]
⇔E=32(x−1)2+3⇔E=32(x−1)2+3 . Do (x-1)22≥≥0⇒32(x−1)2≥0⇒32(x−1)2≥0⇒32(x−1)2+3≥3⇔E≥3⇒32(x−1)2+3≥3⇔E≥3 . Hay Emin=3Emin=3 .
Vậy giá trị nhỏ nhất của E là 3 ⇔{x=1y=1