Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho M= 2+22+23+24+.....+22017+22018
a) tính M
b) chứng tỏ M chia hết cho3
a) M=2+22+23+24+....+22017+22018
=> 2M=2(2+22+23+24+....+22017+22018)
=> 2M=22+23+24+25+....+22018+22019
=> 2M-M=22019-2
b) M=2+22+23+24+....+22017+21018
=> M=(2+22)+(23+24)+....+(22017+22018)
=> M=2(1+2)+23(1+2)+....+22017(1+2)
=> M=2.3+23.3+....+22017.3
=> M=3(2+23+.....+22017)
=> M chia hết cho 3
a, M= 2 + 2^2 + 2^3 +....+ 2^2018
2M= 2^2 + 2^3 + 2^4 +...+ 2^2019
2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)
M= 2^2019 - 2
b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:
M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)
M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)
M= 2. 3 + 2^3.3 +...+ 2^2017.3
M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3
Vậy M chia hết cho 3
a) M=2+22+23+24+....+22017+22018
=> 2M=2(2+22+23+24+....+22017+22018)
=> 2M=22+23+24+25+....+22018+22019
=> 2M-M=22019-2
b) M=2+22+23+24+....+22017+21018
=> M=(2+22)+(23+24)+....+(22017+22018)
=> M=2(1+2)+23(1+2)+....+22017(1+2)
=> M=2.3+23.3+....+22017.3
=> M=3(2+23+.....+22017)
=> M chia hết cho 3
a, M= 2 + 2^2 + 2^3 +....+ 2^2018
2M= 2^2 + 2^3 + 2^4 +...+ 2^2019
2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)
M= 2^2019 - 2
b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:
M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)
M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)
M= 2. 3 + 2^3.3 +...+ 2^2017.3
M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3
Vậy M chia hết cho 3