cho 3 số thực dương a,b,c. chứng minh
\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)