giúp mk vs. thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7,\) \(a,\left(2x-3y\right)^2-\left(2x+3y\right)^2=\left(3x-2y\right)^2-\left(3x+2y\right)^2\)
\(\Leftrightarrow4x^2-12xy+9y^2-4x^2-12xy-9y^2=9x^2-12xy+4y^2-9x^2-12xy-4y^2\)
\(\Leftrightarrow-24xy=-24xy\) ( luôn đúng )
Vậy 2 đẳng thức ở 2 vế bằng nhau.
\(b,\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(\Leftrightarrow\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+\left(bc\right)^2\)
\(\Leftrightarrow\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\) ( luôn đúng )
Vậy 2 đẳng thức ở 2 vế bằng nhau.
*Ở câu \(b,\) dòng thứ 3, vế phải triệt tiêu \(2acbd-2adbc\) \(=0\) nên mất rồi nha.
1.
Ta thấy: $-1\leq \cos x\leq 1$
$\Leftrightarrow 1\leq 2\cos x+3\leq 5$
$\Leftrightarrow 1\leq \sqrt{2\cos x+3}\leq \sqrt{5}$
$\Leftrightarrow -3\leq \sqrt{2\cos x+3}-4\leq \sqrt{5}-4$
Vậy $y_{\min}=-3$ khi $x=(2k+1)\pi$, $y_{\max}=\sqrt{5}-4$ khi $x=2k\pi$ với $k$ nguyên.
2.
\(y=\cos ^2x-6\sin x+3=1-\sin ^2x-6\sin x+3\)
\(=-\sin ^2x-6\sin x+4\)
Ta thấy: $\sin ^2x\leq 1\Rightarrow -\sin ^2x\geq -1$
$\sin x\leq 1\Leftrightarrow -6\sin x\geq -6$
$\Rightarrow y=-\sin ^2x-6\sin x+4\geq -1-6+4=-3$
Vậy $y_{\min}=-3$. Giá trị này đạt tại $x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.
Mặt khác:
\(y=-\sin ^2x-6\sin x+4=9-(\sin x+1)(\sin x+5)\)
$-1\leq \sin x\leq 1\Rightarrow (\sin x+1)(\sin x+5)\geq 0$
$\Rightarrow y=9-(\sin x+1)(\sin x+5)\leq 9$
Vậy $y_{\max}=9$. Giá trị này đạt tại $x=2k\pi -\frac{\pi}{2}$ với $k$ nguyên.
câu 8:
thời gian người đó đi từ A đến B:
\(t=8h5'-7h20'=45'=\dfrac{3}{4}h\)
vận tốc của người đó \(V=\dfrac{S}{t}=\dfrac{24,3}{\dfrac{3}{4}}=32,4km/h=9m/s\)
caau9: đổi \(5m/s=18km/h\)
gọi thời gian người đi xe đạp đi là : \(t\left(h\right)\)
thời gian người đi xe máy: \(t-2\left(h\right)\)
quãng đường người đi xe đạp đi tới khi gặp xe máy:
\(S1=18t\left(km\right)\)
Quãng đường người đi xe máy đi tới khi gặp xe đạp:
\(S2=36\left(t-2\right)\left(km\right)\)
mà \(S1=S2=>18t=36\left(t-2\right)=>t=4\)
vậy 2 người gặp nhau lúc \(8+4=12h\)
nơi gặp nhau cách A là \(S1=18.4=72km\)
a.
\(\pi< a< \dfrac{3\pi}{2}\Rightarrow sina< 0\)
\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\dfrac{12}{13}\)
\(cos2a=cos^2a-sin^2a=\left(-\dfrac{5}{12}\right)^2-\left(-\dfrac{12}{13}\right)^2=...\)
\(sin2a=2sina.cosa=...\)
\(tan2a=\dfrac{sin2a}{cos2a}=...\)
//
\(\dfrac{\pi}{2}< a< \pi\Rightarrow sina>0\Rightarrow sina=\sqrt{1-cos^2a}=\dfrac{12}{13}\)
\(cos2a=cos^2a-sin^2a=...\) ; \(sin2a=2sina.cosa\) ; \(tan2a=\dfrac{sin2a}{cos2a}\) ...
//
\(-\dfrac{\pi}{2}< a< 0\Rightarrow sina< 0\Rightarrow sina=-\sqrt{1-cos^2a}=-\dfrac{3}{5}\)
Thay vào tính cos2a, sin2a, tan2a tương tự như trên
b.
\(\pi< a< \dfrac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)
Tính tương tự câu a
c.
\(\dfrac{3\pi}{4}< a< \pi\Rightarrow\dfrac{3\pi}{2}< 2a< 2\pi\Rightarrow cos2a>0\)
\(sina+cosa=\dfrac{1}{2}\Rightarrow\left(sina+cosa\right)^2=\dfrac{1}{4}\)
\(\Rightarrow1+2sina.cosa=\dfrac{1}{4}\Rightarrow1+sin2a=\dfrac{1}{4}\)
\(\Rightarrow sin2a=-\dfrac{3}{4}\)
\(cos2a=\sqrt{1-sin^22a}=\dfrac{\sqrt{7}}{4}\)
\(tan2a=\dfrac{sin2a}{cos2a}=...\)
1. more beautiful / the most beautiful
2. hotter / the hottest
3. crazier / the craziest
4. more slowly/ the most slowly
5. fewer / fewest
6. less / the least
7. worse / worst
8. better / the best
9. more attractive / the most attractive
10. bigger / the biggest
1 beautiful - more beautiful - most beautiful
2 hot - hotter - hottest
3 crazy - crazier - craziest
4 slowly - more slowly - most slowly
5 few - fewer - fewest
6 little - less - least
7 bad - worse - worst
8 good - better - best
9 attractive - more attractive - most attractive
10 big - bigger - biggest
Giải
\(2x-5x+4xy=6\)
\(\Leftrightarrow x\left(2-5+4y\right)=6\)
\(\Leftrightarrow x\left(4y-3\right)=6\)
\(\Leftrightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(4y-3\) | \(-1\) | \(-2\) | \(-3\) | \(-6\) | \(6\) | \(3\) | \(2\) | \(1\) |
\(y\) | \(0\) | \(1\) |
Vậy \(x,y\in\left\{\left(-2,0\right);\left(6,1\right)\right\}\)
Dễ mà tự làm đi
giúp gì?