K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Để \(x=2\) là nghiệm của phương trình \(3x - 7 = ax + 3 \) thì phương trình trên phải thõa mãn \(3.2-7=a.2+3\) \(\Leftrightarrow a=-2\)

Vậy $a=-2$

Thay x=2 vào phương trình \(3x-7=ax+3\), ta được

\(3\cdot2-7=2a+3\)

\(\Leftrightarrow2a+3=-1\)

\(\Leftrightarrow2a=-4\)

hay a=-2

Vậy: Khi a=-2 thì \(3x-7=ax+3\) có nghiệm là x=2

5 tháng 6 2021

undefined

5 tháng 6 2021

mình làm nhầm đề mất rồi

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

Bài 2: 

a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)

\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)

Trường hợp 1: a=0

=>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

Trường hợp 2: a<>0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)

b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)

Trường hợp 1: a=0

Phương trình sẽ là 2x+5=0

hay x=-5/2

Trường hợp 2: a<>0

Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)

15 tháng 12 2017

NM
13 tháng 1 2022

a. để phương trình nhận x=3 là nghiệm ta có 

\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)

b. Để phương trình có duy nhất 1 nghiệm âm ta có : 

\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)

c. Để phương trình đã cho vô nghiệm thì a=0

d. Phương trình đã cho không thể có vô số nghiệm thực.

NV
8 tháng 4 2021

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

30 tháng 6 2017

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy