chứng minh n+1/3n+4 là tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn giải:
Gọi ƯCLN của –n + 3 và n - 4 là d
⇒ (-n + 3)⋮ d và (n - 4)⋮ d
⇒ [(-n + 3) +(n - 4)] ⋮ d
⇒ -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho là tối giản với ∀n ∈ N
Gọi d=ƯCLN(3n,3n+1) Suy ra 3n chia hết cho d và 3n+1 chia hết cho d Suy ra (3n+1)-3nchia hết cho d Suy ra 3n+1-3n chia hết cho d Suy ra 1chia hết cho d,suy ra d=1,suy ra ƯCLN(3n,3n+1)=1 Suy ra 3n/3n+1 là ps tối giản Chứng tỏ 3n/3n+1(n thuộc N) là phân số tối giản
zì hai số tự nhiên liên tiếp nhau khác 0 sẽ ko cùng chia hết cho số nào lớn hơn1
tử số là số bé mà mẫu số là số lớn hơn số bé 1 đơn vị
điều này chứng tỏ hai số này là hay số tự nhiên liên tiếp
=> nó là phân số tối giản
vì 3n và 3n+1 là hai số tự nhiên liên tiếp
Hướng dẫn giải:
Gọi d là ƯCLN của 3n và 3n + 1
⇒ 3n ⋮ d và (3n + 1)⋮ d
⇒ [(3n + 1) - 3n ] = 1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gọi UCLN của 2 số đó là d
2-3n chia hết cho d
3n-1 chia hết cho d
2-3n+3n-1 chia hết chod
1 chia hết cho d
d=1
2-3n/3n-1 tối giản
Gọi \(ƯCLN\left(3n+5;3n+4\right)=d\)
Ta có :
\(3n+5\text{⋮}d\)
\(3n+4\text{⋮}d\)
\(\Rightarrow\left(3n+5\right)-\left(3n+4\right)\text{⋮}d\)
\(1\text{⋮}d\)
\(d\)lớn nhất \(\Rightarrow d=1\)
\(\Rightarrow\frac{3n+5}{3n+4}\)là phân số tối giản
Hướng dẫn giải:
Gọi ƯCLN của 2n + 1 và 5n + 3 là d
⇒ (3n + 1) ⋮ d và (5n + 2) ⋮ d
⇒ [3(5n + 2) - 5(3n + 1)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gọi d là ƯCLN (n+1; 3n+4) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)=> (3n+4)-(3n+3) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d=1
=> ƯCLN (n+1;3n+4)=1
=> \(\frac{n+1}{3n+4}\)là phan số tối giản (đpcm)