cho a+b+c=0 và a2+b2+c2=2009
tính a4+b4+x4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a + b + c = 0
\(\Rightarrow\) (a + b + c)2 = 0
\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0
\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)
\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\) (Vì a + b + c = 0)
Lại có: a2 + b2 + c2 = 2009
\(\Rightarrow\) (a2 + b2 + c2)2 = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5
Chúc bn học tốt!
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=25\)
\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\)
\(=10^2-2.25=50\)
Ta có: a+b+c=0 ⇒(a+b+c)2=0
Hay a2+b2+c2+2ab+2bc+2ca=0
1+2(ac+bc+ca)=0
ab+bc+ca=\(\dfrac{-1}{2}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\left(1\right)\)
\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+b^2ac+c^2ab+a^bc=a^2b^2+b^2c^2+c^2+a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2=25\)
hay \(2\left(a^2b^2+b^2c^2+c^2a^2\right)=50\left(2\right)\)
Từ (1) và (2) ⇒a4+b4+c4=50
Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1
⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1
Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4
⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2
+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
Lời giải:
PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$
$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$
$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$
$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$
Áp dụng định lý cosin:
Nếu $a^2+b^2-c^2-ab=0$
$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$
$\Rightarrow \widehat{C}=60^0$
Nếu $a^2+b^2-c^2+ab=0$
$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$
Từ a + b + c =0 => -a = -(b + c) => a2 = (b + c)2
<=> a2 - b2 - c2 = 2bc
<=> (a2 - b2 - c2)2 = 4b2c2
<=> a4 + b4 + c4 - 2a2b2 + 2b2c2 - 2c2a2 = 4b2c2
<=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2
<=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
<=> a4 + b4 + c4 = \(\frac{\left(a^2+b^2+c^2\right)^2}{2}\) (đpcm)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 0, không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow ab\ge0\)
Mặt khác do \(c\le1\Rightarrow\left\{{}\begin{matrix}1-c^2\ge0\\1-c\ge0\end{matrix}\right.\)
\(\Rightarrow2ab\left(1-c\right)+1-c^2\ge0\)
\(\Leftrightarrow2ab+1\ge2abc+c^2\)
\(\Leftrightarrow a^2b^2+2ab+1\ge a^2b^2+2abc+c^2\)
\(\Leftrightarrow\left(ab+c\right)^2\le\left(1+ab\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\) (1)
Từ giả thiết:
\(a^2+b^2+c^2\le1+2abc\Leftrightarrow a^2b^2-2abc+c^2\le1-a^2-b^2+a^2b^2\)
\(\Leftrightarrow\left(ab-c\right)^2\le\left(1-a^2\right)\left(1-b^2\right)\) (2)
Nhân vế với vế (1) và (2):
\(\left(ab+c\right)^2\left(ab-c\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\left(1-a^2\right)\left(1-b^2\right)\)
\(\Leftrightarrow1+2a^2b^2c^2\ge a^4+b^4+c^4\) (đpcm)
Dấu "=" xảy ra khi 1 số bằng 1 và 2 số bằng nhau
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=7\cdot\sqrt{\left(a-b\right)^2+4ab}\)
\(=7\cdot\sqrt{7^2+4\cdot60}=119\)
\(\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-2009\)
\(2009^2=4\left(ab+bc+ca\right)^2=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)\)\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)(1)
\(2009^2=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(a^4+b^4+c^4=2009^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (2)
(1)(2) =>\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)