K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(B=\left(5x-4y\right)^2-\left(6x+4y\right)\left(5x-4y\right)+\left(3x+2y\right)^2\)

\(B=\left(5x-4y\right)\left(5x-4y-6x-4y\right)+\left(3x+2y\right)^2\)

\(B=\left(5x-4y\right)\left(-x-8y\right)+\left(3x+2y\right)^2\)

\(B=-5x^2-40xy+4xy+32y^2+9x^2+12xy+4y^2\)

\(B=4x^2-24xy+36y^2\)

\(B=x^2-6xy+6y^2\)

Bài chưa đc ktra lại đâu . Có gì sai sót thì bỏ qua

Ta dễ dàng thấy : \(y\ne0\)nên ta có thể chia hai số hạng của tỉ số \(\frac{5x-2y}{3x+4y}\)cho \(y\). Ta có:

\(\frac{\frac{5x}{y}-2}{\frac{3x}{y}+4}=\frac{3}{4}\)\(\)

Đặt \(\frac{x}{y}\)là t ta có: 4.(5t - 2) = 3.(3t + 4)

Giải đc t = \(\frac{20}{11}\)hay \(\frac{x}{y}=\frac{20}{11}\)

hok tốt

a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)

\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)

\(=-3y+2x\)

b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)

\(=5x-1\)

c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)

\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)

\(=-9xy^2-3y+2x\)

30 tháng 8 2023

a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)

\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)

\(=-3y+2x\)

\(=2x-3y\)

b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)

\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)

\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)

\(=5x-1\)

c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)

\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)

\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)

\(=-9xy^2-3x+2x\)

12 tháng 3 2022

a, bậc 6 

b, bậc 6 

c, bậc 12 

d, bậc 9 

e, bậc 8 

13 tháng 4 2022

huhu

10 tháng 8 2021

ko biết haha

a: Ta có: 5x=-4y

nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)

mà x+y=45

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}=\dfrac{x+y}{\dfrac{1}{5}-\dfrac{1}{4}}=\dfrac{45}{-\dfrac{1}{20}}=900\)

Do đó: x=180; y=-225

b: Ta có: \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)

nên \(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}\)

mà -3x-2y=24

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}=\dfrac{-3x-2y}{-\dfrac{3}{5}+\dfrac{1}{2}}=\dfrac{24}{\dfrac{-1}{10}}=-240\)

Do đó: \(\left\{{}\begin{matrix}-3x=144\\-2y=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-48\\y=60\end{matrix}\right.\)

20 tháng 8 2021

thank ẹ :-Đ

6 tháng 7 2016

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)

27 tháng 8 2021

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

27 tháng 8 2021

cảm ơn bạn