Cho tam giác ABC có D, E lần lượt là trung điểm của AB và AC.
Biết BC = 12cm. Độ dài DE bằng:
A.
12cm
B.6cm
C.8cm
D.7cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác AED có :
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)
Suy ra tam giác ABC ~ tam giác AED ( c-g-c )
b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)
c) Xét tam giác ADC và tam giác AEB có :
\(\widehat{A}\)chung
\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)
Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )
\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)
Xét tam giác KCE và tam giác KDB có :
\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)
Suy ra tam giác KCE ~ tam giác KDB ( g-g )
Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)
Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)
Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)
Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)
Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)
\(\RightarrowĐPCM\)
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC và MN=1/2BC
=>MN=3cm
\(S_{ABC}=\dfrac{1}{2}\cdot8\cdot6=24\left(cm^2\right)\)
b: Xét tứgiác AHBE co
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đó: ABFC là hình thoi
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: \(DE=\dfrac{BC}{2}=4\left(cm\right)\)
Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)
Cho tam giác ABC có D, E lần lượt là trung điểm của AB và AC.
Biết BC = 12cm. Độ dài DE bằng:
A.12cm
B.6cm
C.8cm
D.7cm