cho biểu thức M=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{x^2-2x+1}{2}\)
a) Rút gọn M.
b) Chứng minh rằng nếu 0 < x < 1 thì M > 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình giải thế này
a)\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x+1}\right)^2}{2}\)
\(P=-\sqrt{x}.\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
b)\(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow\sqrt{x}-1< 0\)
\(\Rightarrow-x\left(\sqrt{x}-1\right)>0\)vì \(x>0\)
xong rồi nhé :)
Answer:
a. \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\) ĐK: \(x\ge0;x\ne1\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}+1}.\frac{x-1}{2}\)
\(=\frac{\sqrt{x}\left(1-x\right)}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\)
b. Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\1-\sqrt{x}>0\end{cases}}\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)
Do vậy \(\sqrt{x}\left(1-\sqrt{x}\right)>0\)
c. \(P=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(=-\left(\sqrt{x}\right)^2+\sqrt{x}\)
\(=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\Rightarrow x=\frac{1}{4}\)
ĐKXĐ : \(0\le x\ne1\)
a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(P=\sqrt{x}\left(1-\sqrt{x}\right)\)
Để P > 0 thì \(\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow}0< x< 1\)
c) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy max P = 1/4 khi x = 1/4
ĐK: 0 =< 1 # 0
a) \(\text{P}=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}1}\right).\frac{\left(1-x\right)^2}{2}\)
\(\text{P}=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(\text{P}=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}-1\right)^3}{2}\)
\(\text{P}=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(\text{P}=-\sqrt{x}\left(1-\sqrt{x}\right)\)
b) \(\text{P}=\sqrt{x}\left(\sqrt{x}-1\right)\)
Để P > 0 thì \(\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow0< x< 1}\)
c) \(\text{P}=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)
\(M=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right)\cdot\frac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{x}+2\right)-\sqrt{x}-1}{x-1}\cdot\frac{\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{x-1}\cdot\frac{\sqrt{x}+1}{2\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{2\sqrt{x}}\)
b) PT có nghiệm <=> x>0
<=>\(\sqrt{x}>0\)
<=> \(\sqrt{x}-1>-1\)
<=> x>-1
\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a)
Đkxđ:\(\left\{{}\begin{matrix}x-1\ne0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge0\end{matrix}\right.\)
\(=\)\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2-x\sqrt{x}+\sqrt{x}-2x+2}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}-2x}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(1+\sqrt{x}\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(x-1\right)}{2\left(\sqrt{x}+1\right)}=\frac{-2\sqrt{x}\left(x-1\right)}{2\sqrt{x}+2}\)