K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 1 Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BCa)CM Tg ABOC nội tiếpb)CM OA là đường trung trực của BCc)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng DCM:d)Tính số đo góc HEC2 . Cho đường tròn tâm (O;R) có dây BC cố định (BC khác 2R) và điểm A di động trên cung lớn BC...
Đọc tiếp

 

1 Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BC
a)CM Tg ABOC nội tiếp
b)CM OA là đường trung trực của BC
c)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng D
CM:
d)Tính số đo góc HEC

2 . 

Cho đường tròn tâm (O;R) có dây BC cố định (BC khác 2R) và điểm A di động trên cung lớn BC ( A không trùng B,C và điểm chính giữa cung lớn BC ). Gọi H là hình chiếu của A trên BC; E và F lần lượt là hình chiếu của B,C trên đường kính AD của đường tròn (O;R)

a,CMR:các tứ giác ABHE và AHFC nội tiếp

b,Giả sử BC=R√3,EF=R/√3.Tính số đo ^BAC và tỷ số diện tích △ ABC và △ HÈ

c,CMR:khi điểm A di động thì tâm đường tròn ngoại tiếp △ HÈ là một điểm cố định

3
5 tháng 4 2020

Bài 2

a) Ta có \(\widehat{AEB}=\widehat{AHB}=90^o\). Tứ giác ABHE nội tiếp

=> \(\widehat{EHC}=\widehat{ABA'}=\widehat{BCA'}\)

=> HE//CA'

Vì CA' _|_ AC => HE _|_ AC

c) Gọi M là trung điểm của AB, N là trung điểm BC

Đường tròn ngoại tiếp ABHE có tâm là M nên M nằm trên đường trung trực của HE

Do HE _|_ AC nên trung trực của HE song song với AC và chứa đường trung bình của tam giác ABC

Do đó trung điểm N của BC nằm trên trung trự của HE

Mặt khác E,F là chân đường vuông góc của B và C hạ xuông AA' nên trung trực của EF đi qua trung điểm N của BC

Vậy N là tâm của đường tròn ngoại tiếp tam giác HEF là 1 điểm cố định cho BC cố định

5 tháng 4 2020

Bài 1

bổ sung câu c bài hỏi .là : CM \(\frac{DE}{BE}=\frac{BD}{BA}\)

bài làm

a) ta có . tam giác ACO zuông tại C , Tam giác ABO zuông tại B

nên C , B lần lượt nhìn AO zới 1 góc =90 độ

=> ABCO nội tiếp 

b) ta có tam giác ABC cân tại A do AB=AC

mà AH là đường cao

nên AH cx là đường trung tuyến

=> CH = HB

=> AO là đường trung trực của CB

c) ta có BD là đường kính của O 

nên góc BED = 90 độ

xét 2 tam giác zuông BED zà ABD có

góc BAD = góc BDA ( cùng nhìn \(\widebat{BE}\)

BD chung

=> tam giác BED = tam giác DBA 

=> \(\frac{DE}{BE}=\frac{BD}{BA}\)

12 tháng 12 2018

chiu

moi hoc lop 5 thui

doi toan lop 9 o dau ra

1: ΔABC cân tại A 

=>AB=AC

mà OB=OC

nên AO là trung trực của BC

=>AD là đường kính của (O)

2: Xét (O) có

góc ACD là góc nội tiếp chắn nửa đường tròn

=>góc ACD=90 độ

3: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=BC/2=12cm

AH=căn AB^2-AH^2=16cm

ΔACD vuông tại C có CH là đường cao

nên AC^2=AH*AD

=>AD=20^2/16=25cm

=>R=12,5cm

9 tháng 6 2021

1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD

\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp

Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp 

\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn

2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi

có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông

AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB

Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)

\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)

3) OH cắt AB tại F

Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp

\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)

mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)

mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định undefined

 

4 tháng 5 2020

hình :

O' O M N A B C

lời giải :

a) MN cắt ( O ) tại C

dễ thấy O'N vuông góc với AB

Ta có : \(\Delta O'MN\)cân tại O' nên \(\widehat{O'MN}=\widehat{O'NM}\)( 1 )

Mà \(\Delta OMC\)cân tại O nên \(\widehat{OMC}=\widehat{OCM}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{O'NM}=\widehat{OCM}\)nên O'N // OC

\(\Rightarrow OC\perp AB\), suy ra C cố định

b) vẽ bán kính \(OC\perp AB\) ( C và M thuộc hai nửa mặt phẳng đối nhau bờ AB )

CM cắt AB tại N

đường thẳng qua N và song song với OC cắt OM tại O'

Dựng đường tròn ( O';O'M )

đó là đường tròn phải dựng

22 tháng 9 2021

chữ các thành chữ cắt nha mn