K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a, Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :

\(AB^2+AC^2=BC^2\)

=> \(3^2+4^2=BC^2=25\)

=> BC = 5 ( cm )

b, - Xét \(\Delta ABD\)\(\Delta EBD\) có :

\(\left\{{}\begin{matrix}AB=BE\left(gt\right)\\\widehat{ABD}=\widehat{EBD}\left(gt\right)\\BD=BD\end{matrix}\right.\)

=> \(\Delta ABD\) = \(\Delta EBD\) ( c - g - c )

c, Ta có : \(\Delta ABD\) = \(\Delta EBD\) ( câu a )

=> AD = ED ( cạnh tương ứng )

- Xét \(\Delta ADF\)\(\Delta EDC\) có :

\(\left\{{}\begin{matrix}AD=ED\left(cmt\right)\\\widehat{ADF}=\widehat{EDC}\left(>< \right)\\FA=EC\left(gt\right)\end{matrix}\right.\)

=> \(\Delta ADF\) = \(\Delta EDC\) ( c - g - c )

=> DF = DC ( đpcm )

26 tháng 2 2020

A B C E D F

D)VÌ\(\Delta ADF=\Delta EDC\left(cmt\right)\)

\(\Rightarrow\widehat{ADF}=\widehat{EDC}\)(HAI GÓC TƯƠNG ỨNG)

TA CÓ \(\widehat{ADE}+\widehat{EDC}=180^o\left(KB\right)\)

THAY  \(\widehat{ADE}+\widehat{ADF}=180^o\)

       \(\widehat{FDE}=180^o\)

=> BA ĐIỂM F ,D,E THẲNG HÀNG

26 tháng 2 2020

a) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(BC^2=AB^2+AC^2\left(\text{Đ}/LPY-TA-GO\right)\)

THAY\(BC^2=3^2+4^2\)

\(BC^2=9+16\)

\(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

21 tháng 12 2023

I,D,E THẲNG HÀNG

 

 

26 tháng 2 2020

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2

=> BC2 = 32 + 42  => BC2 = 9 + 16 => BC2 = 25 => BC = 5 (cm)

b, Vì BD là phân giác ABC => ABD = DBC = ABC : 2

Xét △BAD và △BED

Có: AB = BE (gt)

    ABD = EBD (cmt)

  BD là cạnh chung

=> △BAD = △BED (c.g.c)

c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)

Và BAD = BED (2 góc tương ứng)  

Mà BAD = 90o => BED = 90o

Xét △ADF vuông tại A và △EDC vuông tại E

Có: AF = EC (gt)

      AD = ED (cmt)

=> △ADF = △EDC (2cgv)

=> DF = DC (2 cạnh tương ứng)

d, Vì △ADF = △EDC (cmt) => ADF = EDC (2 góc tương ứng)  

Ta có: ADE + EDC = 180o (2 góc kề bù)

=> ADE + ADF = 180o

=> EDF = 180o

=> 3 điểm E, D, F thẳng hàng

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
10 tháng 3 2020

Câu hỏi của Monster - Toán lớp 7 - Học toán với OnlineMath 

Bạn tham khảo bài làm !!

a. Áp dụng định lí Py-ta-go:

B
C
=

A
B
2
+
A
C
2
=

3
2
+
4
2
=
5
 cm

b. Xét ΔABD và ΔEBD:

Ta có: 
ˆ
A
B
D
=
ˆ
E
B
D
 (giả thuyết)

BE=BA (giả thuyết)

BD cạnh chung

Vậy ΔABD = ΔEBD (c.g.c)

c. Xét hai tam giác vuông ΔADF và ΔEDC:

Ta có: AD=ED (cm câu a)

AF=EC ( giả thuyết)

Vậy ΔADF = ΔED (hai cạnh góc vuông)

Vậy DC=DF (cạnh tương ứng)

d. Do ΔADF = ΔED nên 
ˆ
A
D
F
=
ˆ
E
D
C
 (góc tương ứng) (1)

Do D 
ϵ
 AC nên D,A,C thẳng hàng vậy 
ˆ
A
D
E
+
ˆ
E
D
C
=
ˆ
A
D
C
=
180
°
  (2)

Từ (1)(2) Suy ra: 
ˆ
A
D
E
+
ˆ
A
D
F
=
180
°
 

Vậy E,D,F thẳng hàng

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm