chứng minh \(\frac{1}{x^2}+\frac{1}{y^2}\text{≤}\frac{8}{\left(x+y\right)^2}\) với x,y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:
\(x^4+y^2\ge2x^2y\)
\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)
\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)
BĐT Vasc cơ bản:
Cho các số dương \(abc=1\) thì:
\(\sum\frac{1}{a^2+a+1}\ge1\)
Chứng minh:
Đặt \(\left\{{}\begin{matrix}a=\frac{yz}{x^2}\\b=\frac{xz}{y^2}\\c=\frac{xy}{z^2}\end{matrix}\right.\) thì BĐT trở thành:
\(\sum\frac{x^4}{x^4+x^2yz+y^2z^2}\ge1\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+y^2xz+z^2xy+x^2y^2+y^2z^2+z^2x^2}\ge1\)
Nhân chéo và thực hiện khai triển:
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\)
Sau đó rút gọn ta được:
\(x^2y^2+y^2z^2+x^2z^2\ge x^2yz+y^2xz+z^2xy\)
BĐT trên chính là dạng \(a^2+b^2+c^2\ge ab+ac+bc\)
Vậy BĐT đã được chứng minh xong
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
A=\(\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+\frac{1}{x}\right)\left(1+y\right)=x+\frac{x}{y}+\frac{1}{y}+1+y+\frac{y}{x}+\frac{1}{x}+1\)
=\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\)
mà x2+y2=1
=>2(x2+y2)>(=)(x+y)2
\(\Rightarrow x+y\le\sqrt{2}\)
áp dụng bất đẳng thức cô si ta có:
\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\ge\left(x+y+\frac{4}{x+y}\right)+4\)
\(=\left[\left(x+y\right)+\frac{2}{x+y}+\frac{2}{x+y}\right]+4\ge2\sqrt{2}+\sqrt{2}+4=4+3\sqrt{2}\)
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé
BĐT bạn ghi ngược rồi, BĐT đúng phải là:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\)
Chứng minh:
Ta có: \(\left(\frac{1}{x}\right)^2+\left(\frac{1}{y}\right)^2\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(\frac{4}{x+y}\right)^2=\frac{8}{\left(x+y\right)^2}\)
Dấu "=" xảy ra khi \(x=y\)