cho 702 số tự nhiên 1,2,3,...,702 chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi số n nhỏ nhất có thể là bao nhiêu?số n lớn nhất có thể là bao nhiêucho 702 số tự nhiên 1,2,3,...,702 chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi số n nhỏ nhất có thể là bao nhiêu?số n lớn nhất có thể là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng nhỏ nhất có thể là 2019.
Ta có : 702 + 701 + 616 = 2019
=> N (min) = 3
Ta có : 1 + 2 + 3 + ... + 702 = 246753. Mà 246753 / 2019 = 122 ( dư 435 )
=> Loại bỏ 435 thì ta có tổng lớn nhất có thể.
=> N (max) = 702 - 1 = 701
N+3:d=> 2n+6:d
=> 2n+6-2n+5:d
=> 1:d
=> 2 so tren la 2 so nguyen to cung nhau
Tổng của 2015 số tự nhiên từ 1 đến 2015 là:
(1+2015) x 2015 : 2 = 2031120
Tổng của n số cần chọn theo yêu cầu bài toán là:
2031120 : 3 = 677040
+Với n nhỏ nhất khi ta chon n số lớn nhất có thể để tổng bằng 677040
Ta dãy số liên tiếp từ: 2015, 2014 , 2013,… m sao cho tổng các số đó lớn nhất có thể nhưng không quá 677040
Dãy 2015, 2014, 2013,…,m có số số hạng là: (2015 - m) : 1 + 1 = 2016 – m(số hạng)
Dãy 2015, 2014, 2013,… ,m có tổng là: (2015 + m) x (2016 - m): 2 sao cho lớn nhất có thể nhưng không quá 677040.
Suy ra: ( m - 1) x m lớn hơn hoặc bằng 2708160
Ta tìm được m nhỏ nhất = 1647
Ta thấy dãy 2015, 2014, 2013,…,1647 có:
(2015-1647) :1+ 1 = 369 (số hạng) và tổng là:
(2015+1647) x ( 369 : 2) = 675639
Mà 677040 = 675639 + 1401
Vậy n nhỏ nhất là : 369+1 = 370
+ Với n lớn nhất: Ta chọn các số liên tiếp từ : 1,2,3,…, b sao cho tổng các số đó lớn nhất có thể nhưng không quá 677040
Dãy 1,2,3,4,…,b có b số hạng và có tổng là: b x (b+1) : 2 nhỏ hơn hoặc bằng 677040
Ta tìm được b lớn nhất =1163
Xét dãy số từ 1 đến 1163 là có tổng là:
1163 x 1164 : 2 = 676866
Tổng trên còn nhỏ hơn tổng của n là:
677040 – 676866 =174
Vậy nếu lấy 1164 – 174 = 990
Tổng n có nhiều chữ số nhất sẽ là :
1+2+3+….1164 – 990 = 677404
Vậy tổng n lớn nhất có số các số hạng là:
1164-1 = 1163 (Số hạng)
Đáp số: Số n nhỏ nhất: 370
Số n lớn nhất: 1163
Đáp số của bạn top scorer sai vì bạn nhầm ngay từ đầu. Tôi thắc mắc tại sao học sinh lớp 5 lại phải làm bài toán này. Bài này có lẽ chỉ hợp với các học sinh ít nhất là lớp 8. Muốn cho thành lớp 5 thì số 2015 phải nhỏ thôi.
Vì tổng của n số được chọn bằng 2 lần tổng các số còn lại nên tổng n số được chọn bằng 2/3 tổng tất cả các số từ 1 đến 2015, do đó tổng n số được chọn luôn bằng \(\frac{2}{3}\cdot\left(1+2+\cdots+2015\right)=\frac{2015\cdot2016}{3}=:m\). (Đặt số đó là m).
Giả sử các số được chọn là \(1\le x_1
Giải:
Tổng 702 số bằng 24 6753.
vì 246753 chia 2019 bằng 122 dư 435 n lớn nhất là 122.
2019=702+701+616 => n nhỏ nhất là 3.