K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020
https://i.imgur.com/fKgBQmm.jpg
4 tháng 4 2020
https://i.imgur.com/ByP7buA.jpg

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)

25 tháng 1 2020

Hình tự vẽ ạ!

a, Xét  \(\Delta MED\)và \(\Delta AEM\)có:

\(\widehat{DME}=\widehat{ACM}\left(so-le-trong\right)\)

\(\widehat{MAE}=\widehat{ACM}\)(cùng chắn cung \(AD\))

\(\Rightarrow\widehat{DME}=\widehat{MAE}\)

\(\widehat{E}\)là góc chung.

\(\Rightarrow\Delta MED~\Delta AEM\left(1\right)\)

Xét \(\Delta BED\)và \(\Delta AEB\)có:

\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn cung \(BD\))

\(\widehat{E}\)là góc chung

\(\Rightarrow\Delta BED~\Delta AEB\left(3\right)\)

b, Từ \(\left(1\right)\Rightarrow\frac{ME}{AE}=\frac{ED}{EM}\Rightarrow ME^2=ED.EA\left(2\right)\)

Từ \(\left(3\right)\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Rightarrow EB^2=EA.ED\left(4\right)\)

Từ \(\left(2\right)\left(4\right)\Rightarrow EM=EB\)

\(\Rightarrow E\)là trung điểm của \(MB\left(Đpcm\right)\)

~~~Happy new year ~~~

4 tháng 2 2022

Bạn xem lại đề giúp mình nha, vì đề ko có dữ kiện nào liên quan tới điểm C,D hết

Xét ΔMAD và ΔMCA có

góc MAD=góc MCA

góc AMD chung

=>ΔMAD đồng dạng với ΔMCA

=>MA/MC=MD/MA

=>MA^2=MC*MD