K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2020

\(a=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{9+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{9+\sqrt{x+7}}}{x-1}=\frac{29}{36}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(2-\frac{3}{x}\right)^2.x^3\left(4+\frac{7}{x}\right)^3}{x^3\left(3+\frac{1}{x^3}\right).x^2\left(10+\frac{9}{x^2}\right)}=\frac{2.4}{3.10}=\frac{4}{15}\)

\(c=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+4x}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{1+6x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\frac{\frac{-4x^2}{\sqrt{1+4x}+2x+1}+\frac{8x^3+12x^2}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{-4}{\sqrt{1+4x}+2x+1}+\frac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}\right)=\frac{-4}{1+1}+\frac{12}{1+1+1}=2\)

NV
5 tháng 4 2020

\(d=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+6x}\left(\sqrt{1+4x}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{1+6x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{4x\sqrt{1+6x}}{x\left(\sqrt{1+4x}+1\right)}+\lim\limits_{x\rightarrow0}\frac{6x}{x\left(\sqrt{1+6x}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\frac{4\sqrt{1+6x}}{\sqrt{1+4x}+1}+\lim\limits_{x\rightarrow0}\frac{6}{\sqrt{1+6x}+1}=\frac{4}{1+1}+\frac{6}{1+1}=5\)

\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+4x}\left(\sqrt{1+2x}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{2x\sqrt[3]{1+4x}}{x\left(\sqrt{1+2x}+1\right)}+\lim\limits_{x\rightarrow0}\frac{4x}{x\left(\sqrt[3]{\left(1+4x\right)^2}+\sqrt[3]{1+4x}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\frac{2\sqrt[3]{1+4x}}{\sqrt{1+2x}+1}+\lim\limits_{x\rightarrow0}\frac{4}{\sqrt[3]{\left(1+4x\right)^2}+\sqrt[3]{1+4x}+1}=\frac{2}{1+1}+\frac{4}{1+1+1}=\frac{7}{3}\)

12 tháng 2 2019

Đáp án đúng : D

14 tháng 12 2019

Giải bài 3 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

26 tháng 9 2019

Giải bài 3 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

15 tháng 10 2017

Giải bài 5 trang 142 sgk Đại Số 11 | Để học tốt Toán 11

17 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

27 tháng 9 2018

lim x → + ∞   x 3   +   2 x 2 x   -   1   =   + ∞

25 tháng 8 2017

Đáp án D.

26 tháng 12 2019

Đáp án D

21 tháng 12 2018

Đáp án C

lim 4 n + 1 3 n − 1 = lim 4 + 1 n 3 − 1 n = 4 3