K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

a

) x O y M A B d

b

A O B m C n D M

c

A B C d 1 2 d D

d

A B C

ĐÃ VẼ LẠI 2 LẦN.LẦN NÀY LÀ LẦN 3

=> CUỘC ĐỜI ĐEN NHỌ CỦA COOL KID :V

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

Không mất tổng quát giả sử $AB< AC$

Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:

$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$

Ta có:

$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$

$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$

Theo định lý Talet đảo suy ra $MN\parallel AH$

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Hình vẽ 1:

undefined

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

19 tháng 2 2020

Gọi giao điểm của đg thẳng vuông góc với AD cắt AD tại T

Xét tam giác ANC vuông tại C và tam giác ANT vuông tại T có

       AN^2=AT^2 + TN^2       (Đlí Py-ta-go)

       AN^2=CN^2 + AC^2

=> AT^2+TN^2=CN^2+AC^2     (1)

 Xét tam giác TND vuông tại T, tam giác KDT vuông tại T, tam giác ATK vuông tại T, tam giác ABK vuông tại B có

     ND^2=TD^2+TN^2

     KD^2=TD^2+TK^2

     AK^2=AT^2+TK^2

     AK^2=AB^2+BK^2

=>(1) <=> AC^2 + NC^2-NT^2 =AT^2

Mà NC=ND( Vì N là trung điểm của CD ) ;AB=AC (GT)

 => AC^2+NC^2-NT^2=AT^2 <=> AC^2 + ND^2 - NT^2 = AT^2

                                              <=> AC^2 + (ND^2 - NT^2)= AT^2

                                              <=>AB^2 + TD^2 = AT^2

                                              <=> AB^2+(KD^2 - KT^2) = AT^2

                                              <=> AB^2 + KD^2 - KT^2 =AT^2

                                              <=> KD^2 - ( KT^2 + AT^2)= -(AB)^2

                                              <=> KD^2 - AK^2 = -(AB)^2

                                              <=> KD^2 = AK^2 - AB^2

                                              <=> KD^2 = BK^2

                                              <=> KD = KB

Vậy KB = KD 

23 tháng 2 2020

Gọi giao điểm của dường thẳng vuông góc với AD cắt AD tại T

Xét tam giác ANC vuông tại C và tam giác ANT vuông tại T , ta có :

\(AN^2=AT^2+TN^2\)( định lí Py-ta-go )

\(AN^2=CN^2+AC^2\)

\(\Rightarrow AT^2+TN^2=CN^2+AC^2\left(1\right)\)

Xét tam giác TND vuông tại T , KDT vuông tại T , ATK vuông tại T , ABK vuông tại B : Ta có :

\(ND^2=TD^2+TN^2\)

\(KD^2=TD^2+TK^2\)

\(AK^2=AT^2+TK^2\)

\(AK^2=AB^2+BK^2\)

\(\Rightarrow\left(1\right)\Leftrightarrow AC^2+NC^2-NT^2=AT^2\)

Mà NC = ND ( Vì N là trung điểm của CD ) 

AB = AC(gt)

\(\Rightarrow AC^2+NC^2-NT^2=AT^2\Leftrightarrow AC^2+ND^2-NT^2=AT^2\)

\(\Leftrightarrow AC^2+\left(ND^2-NT^2\right)=AT^2\)

\(\Leftrightarrow AB^2+TD^2=AT^2\)

\(\Leftrightarrow AB^2+\left(KD^2-KT^2\right)=AT^2\)

\(\Leftrightarrow AB^2+KD^2-KT^2=AT^2\)

Bạn tự làm tiếp nhé~

6 tháng 3 2018

vẽ hình đi

mik tl cho

học tốt